

Customer Edge Switching & Realm Gateway Tutorial Session – Day 1

Jesus Llorente Santos jesus.llorente.santos@aalto.fi

www.re2ee.org

Outline

- Current Internet Model
 - User Location
 - Use of Domain Name System (DNS)
- Issues with Current Internet Model NATs
- CES to CES communications
- Establishing CES connections
- Application Layer Gateway (ALG)
- Additional Material
 - Introduction to Testbed, System Architecture, OpenFlow...

- Internet goes mobile
 - Massive growth of connected users and devices
 - Expect an exponential growth with the arrival of IoT
- Dominant presence of Network Address Translator (NAT)
 - Driven by the IPv4 address exhaustion
 - Allow multiple hosts to connect to the Internet with the same public IP address
 - Separation of private and public networks
 - Reuse same private networks over and over (~18M IPs)
 - 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16
 - Requires binding state of IPs and ports when packets traverse the NAT: public-to-private and private-to-public
 - Acts as a first layer of security blocking inbound connections

- Location of communicating nodes
 - Users typically located in private networks behind NATs
 - Reduce the amount of public IP addresses needed
 - Need to be able to initiate connections towards public servers
 - Example: computers, laptops, smartphones, etc.
 - Public servers and/or services must be publicly reachable
 - Directly reachable at IP layer via routing
 - Reachable via a proxy or frontend
 - Need to serve requests from connecting users
 - Example: Mail, SSH, HTTP(S), etc.

- Identification of hosts and services
 - By IP address
 - Valid on public networks may cause problems across private networks
 - Binds together host identity and routing locator
 - Not always easy to remember: 130.233.224.254
 - By name
 - Typically following a hierarchical naming scheme, i.e. Fully Qualified Domain Name (FQDN) in DNS
 - Decouples host identity from routing locator
 - Easier to remember: comnet.aalto.fi

- Domain Name System DNS
 - Resolves FQDN names to IP addresses (most typical function)
 - Transaction based Query/Response
 - Client-Server architecture

Internet Architecture

Issues with the current Internet Model

- NAT introduces reachability problem
 - Block inbound connections from reaching the private network
 - NAT-unfriendly protocols are negatively affected by NATs
 - Use of IP address literals or separate control/data connections
 - Require specific Application Layer Gateways e.g. SIP, FTP
 - Traversal of the NAT requires additional protocols
 - STUN/TURN/ICE
 - Results in increased delays during connection setup
 - Requires specific application code and increases network traffic

Issues with the current Internet Model

More on STUN / TURN / ICE

Issues with the current Internet Model

- Unwanted traffic: Any source can send a packet to any destination address
- Possibility of source address spoofing makes it difficult to attribute evidence of misbehavior to the legitimate source

CES Communications

- CES replaces the existing NAT node of the network
- CES provides name resolution and gateway functionality
- Addressing of the private network is not modified
 - Hosts remain connected with their private addressing
- Does not require changes in either hosts or protocols
- Host identification is always based on names FQDN
 - IP addresses are not used for identification due to their private nature and because they can be repeated across networks

CES Communications

- Provides policy based communications
 - Connection establishment is determined by a set of requirements
 - Reduces unwanted traffic in destination
 - Contributes to mitigate DDoS attacks
- Overcomes the reachability problem of NATs
 - Enables global communications using private IP addresses
 - ALGs are still required for specific protocols that exchange IP address literals as part of the signaling, e.g. SIP, FTP, etc.
- Tunnels end-to-end user data packets across CES edge nodes over any connected network

There are 3 phases to establishing CES connections

1. Discovery of CES endpoint

- Triggered by name resolution of a remote host DNS query
- Availability of CES service encoded in DNS NAPTR records
- b.ces. 30 IN NAPTR 10 6 "U" "CETP+cesid""!^(.*)\$!cesid:1=cesb.ces.?ip=192.0.2.10?alias=IXP!" .
 - Service: CETP+cesid
 - CES Identifier: cesid:1=cesb.ces
 - Endpoint: 192.0.2.10
 - Alias network: IXP

2. Policy negotiation followed by CES discovery

- Typically 1 to 3 rounds of signaling exchange
- Minimizes computation on the inbound CES
- Mutual exchange between CES nodes of host policy requirements
 - Success: Allocation of IP proxy addresses for end-to-end data forwarding
 - Failure: Notification via DNS response with error code NXDOMAIN
- Allocation of session tags for connection identification
 - Source Session Tag / Destination Session Tag
 - Currently using 32-bit tags for experimentation
- First connection suffers additional delay during policy negotiation
- Following connections have virtually zero delay due to DNS cache

- 3. Data forwarding after successful policy negotiation
 - Stateful binding on each CES
 - CES session tags
 - CES routing locators, e.g. Ethernet, IPv4, IPv6, etc.
 - Hosts IDs
 - Hosts FQDNs (useful for PTR reverse queries)
 - Host local IP and allocated proxy IP address
 - CES to CES encapsulated user data with address translation at the edges similar to layer 3 VPN service end to end
 - Proxy IP is allocated from a private pool, e.g. 10.0.0.0/8
 - Proxy IP is a just a local representation of the remote host
 - Proxy IP is meaningless outside the scope of the CES connection

CES Application Layer Gateway ALG

Application Layer Gateways (ALG) developed for the following protocols

- ICMP and ICMP error packets
 - Address transformation at edges
- UDP based SIP Session Initiation Protocol
 - Replacement of IP address literals by FQDN
- TCP based FTP File Transfer Protocol
 - Replacement of IP address literals by FQDN
 - Introduces an offset in subsequent TCP segments (SEQ, ACK)
- TCP based RTSP Real Time Streaming Protocol
 - Replacement of IP address literals by FQDN
 - Introduces an offset in subsequent TCP segments (SEQ, ACK)

CES Application Layer Gateway ALG

FTP Case – Stateful ALG with TCP header rewrite

Extra 1: Development Architecture

Current testbed relies on Proxmox VE 3.4

- Supports both KVM and containers with OpenVZ
- Containers are more lightweight compared to full-blown VM
- Available at http://proxmox.com/en/proxmox-ve
- Our whole testbed sits on a single VM running Proxmox
 - All hosts and nodes are virtualized with containers
 - Includes kernel support for OpenvSwitch
 - Networking scenario is made of:
 - Linux bridges
 - OpenvSwitch bridges
 - Virtual Ethernet pairs

Extra 1: Development Architecture

Extra 3: OpenFlow Tables

Thank you!

Q & A?

