
Policy Creation and Bootstrapping System
For Customer Edge Switching

Fofana Ibrahima Kalil

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 30.11.2017

Thesis supervisor:

Prof. Raimo Kantola

Thesis advisor:

M.Sc. Hammad Kabir

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Fofana Ibrahima Kalil

Title: Policy Creation and Bootstrapping System For Customer Edge Switching

Date: 30.11.2017 Language: English Number of pages: 8+63

Department of Communications and Networking

Professorship: Networking Technology

Supervisor: Prof. Raimo Kantola

Advisor: M.Sc. Hammad Kabir
The number of Internet connected devices is increasing and have caused the shortage
of the IPv4 addresses. The adoption of Network Address Translation (NAT) has
solved the IPv4 address depletion problem but it has introduced “reachability
problem”. This problem prevents a host on the Internet from being able to reach
another host behind a NAT. While several NAT traversal methods have been
developed to solve the reachability problem, no ideal solution for mobile devices
has been suggested.
Customer Edge Switching (CES) is a new experimental architecture for Internet
communications that prior to allowing communication between hosts and establishes
a generalized chain of trust between the hosts. CES aims to replace NAT and
removes the problems known in NAT traversal methods. In addition, CES has
security features which are more comprehensive in nature and can protect the
interest of the served hosts over the Internet. CES proposes policy tools such
as Policy Creation and Bootstrapping System (PCBS) and Policy Management
System (PMS) to allow the end user to control flows emanating from the Internet
to her device.
In this thesis, PCBS was developed to provide the end user the ability to create her
own policies. The PCBS has a utility tool running on the end user device called
Policy App that aims to glean as much information as possible from the device and
store that to the User Policy Database (UPS) for further processing, validation
and modification by end user using Policy Interface. The policies that are created
are then pushed to the Policy Management System (PMS). The PMS on the other
hand provides the end user policies to the CES nodes that act as firewalls.

Keywords: CES, UPS, UPD, UPA, NAT, PCBS, PMS, Policy, Security

iii

Acknowledgements
First of all, thanks to Almighty Allah who grants me ease to successfully achieve
this thesis. I thank my family and all friends for their support during my studies in
Finland. I especially thank my uncle Aly Djiguine for his support.

I want to thank my supervisor Professor Raimo Kantola, for welcoming me to
work in his research group, granted his trust and supported me for more than 8
months, and his advice was a great help to me.

Thanks to my instructor Hammad Kabir for supporting me all the many times for
his generous and stimulating readings, and then for his confidence and his remarks.

Finally, I thank Aalto University for giving me a place to study and providing
me resources during my studies in Finland.

Otaniemi, 30.11.2017

Fofana Ibrahima Kalil

iv

Contents
Abstract ii

Acknowledgements iii

Contents iv

List of Acronyms vii

1 Introduction 1
1.1 Research Problem . 2
1.2 Objectives . 2
1.3 Scope . 2
1.4 Structure . 3
1.5 Contribution . 3

2 Basics of Computer Security 4
2.1 Device security . 4
2.2 Principle of security . 4

2.2.1 Confidentiality . 4
2.2.2 Integrity . 4
2.2.3 Availability . 4
2.2.4 Authenticity . 5
2.2.5 Non-repudiation . 5
2.2.6 Access Control . 5

2.3 Principle of security . 5
2.3.1 Linux architecture . 6
2.3.2 Android architecture . 9

2.4 End system vulnerabilities and threats 11
2.4.1 OS vulnerabilities . 11
2.4.2 Hardware vulnerabilities . 12
2.4.3 Application/ Software vulnerabilities 13

2.5 Attack types . 13
2.6 Prevention mechanisms . 17

3 State of the art in policy management 19
3.1 What is a policy? . 19
3.2 Policy classification . 20
3.3 Policy properties . 20
3.4 Policy-Based Model . 21

3.4.1 IETF policy-based management architecture 22

v

4 TCP/ IP model 24
4.1 Network and Protocol . 24
4.2 Internet protocol . 25

4.2.1 Internet Protocol version 4 (IPv4) 25
4.2.2 Internet Protocol version 6 (IPv6) 26

4.3 Transport protocols . 27
4.3.1 Transmission Control Protocol (TCP) 27
4.3.2 User Datagram Protocol (UDP) 29

4.4 Domain Name System (DNS) . 30
4.4.1 Domain Name Space . 30
4.4.2 Name Server . 30
4.4.3 Resolver . 30

4.5 Network Address Translation (NAT) 31
4.5.1 How NAT works . 31
4.5.2 Problem with NAT . 31

5 Customer Edge Switching 33
5.1 Motivation . 33
5.2 Architecture . 33
5.3 Communication in CES . 34

5.3.1 Inter-CES communication . 34
5.3.2 Intra-CES communication . 35
5.3.3 Packet forwarding in PRGW 36

5.4 Customer Edge Traversal Protocol (CETP) 36
5.5 Conclusion and research questions . 37

6 Implementation and Evaluation 39
6.1 User Policy Agent (UPA) . 40

6.1.1 Linux Policy App . 41
6.1.2 Android Policy App . 43
6.1.3 Policy Interface . 47

6.2 User Policy Database (UPD) . 47
6.3 User Policy Server (UPS) . 48
6.4 Policy Management System (PMS) client 48
6.5 Implementation and Usage of Policy Interface 48
6.6 Usage of the PCBS . 51

6.6.1 Usage for Android user . 51
6.6.2 Usage for Linux user . 51

7 Performance testing 53
7.1 Test tools . 53
7.2 Test environment . 53
7.3 Test data . 54
7.4 Performance Test of User Policy Server 54

vi

7.4.1 Test1: Average number of replies between concurrent Policy
Apps and UPS without processing 55

7.4.2 Test2: Response time between UPS and UPD 56
7.4.3 Test3: Average number of replies between concurrent Policy

Apps and UPS with processing 57
7.5 Test4: Policy App performance . 59
7.6 Conclusion and Future works . 60
7.7 Discussion . 60

vii

List of Acronyms
ALG Application Layer Gateway
APK Android Application Package
ARP Address Resolution Protocol
BSD Berkeley Software Distribution
CES Customer Edge Switching
CETP Customer Edge Traversal Protocol
CIDR Classless Inter-Domain Routing
CN Customer Network
CPU Central Processing Unit
DDoS Distributed Denial of Service
DMTF Distributed Management Task Force
DNS Domain Name System
DoS Denial-of-Service
DRDoS Distributed Reflection Denial of Service
DVM Dalvik Virtual Machine
FQDN Fully Qualified Domain Name
FTP File Transfer Protocol
HIDS Host Intrusion Detection Systems
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
ICE Interactive Connectivity Establishment
iCES inbound CES
IDS Intrusion Detection Systems
IETF Internet Engineering Task Force
IoT Internet of Things
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ISO International Organization for Standardization
ITF Internet Trust Framework
LDAP Lightweight Directory Access Protocol
MITM Man in the Middle
NAPTR Naming Authority Pointer
NAT Network Address Translation
NIDS Network Intrusion Detection Systems
NSP Network Security Policy
oCES outbound CES
OS Operating System
OSI Open Systems Interconnection
PCBS Policy Creation and Bootstrapping System
PDP Policy Decision Point
PEP Policy Enforcement Point

viii

PMS Policy Management System
PMT Policy Management Tool
PR Policy Repository
PRGW Private Realm Gateway
RAM Random Access Memory
SCTP Stream Control Transmission Protocol
SIP Session Initiation Protocol
SLA Service Level Agreement
SNMP Simple Network Management Protocol
SPN Service Provider Network
SQL Structured Query Language
SSH Secure Shell
STUN Session Traversal Utilities for NAT
TCP Transmission Control Protocol
TURN Traversal Using Relay around NAT
UDP User Datagram Protocol
UPA User Policy App
UPD User Policy Database
UPS User Policy Server

1

1 Introduction
In the modern world of technology, Internet connectivity has become fundamental for
daily and work-related activities. Individuals and organizations access the Internet
using various smart devices such as tablets, phones, and computers. These devices
run Applications or Apps as a means of performing particular functions and tasks on
a computer or mobile device. Google’s Android and Apple’s iOS are the two leading
mobile operating system platforms, with their respective apps markets: Google
Play store and Appstore. Each of these stores has above 2 million apps [1]. While
smart devices and their apps, together with an increase in Internet connectivity
penetration, have brought convenience to people’s lives, there is a growing set of
security vulnerabilities and malicious programs targeting end users and their devices.

The mobile OS vendors provide their application stores as safety platforms
from where users can download trusted and reputed application software. However,
malware can still find its way to the end user devices because of the magnitude of
apps published daily, which limits the ability of these platforms to control and detect
all the published malicious applications. Thus, there exists the possibility of rogue
applications within these platforms that an unsuspecting end user can download to
her device, and they can thus pose security threats to the end user device.

There have been many high profile cybersecurity breaches in recent years. For
example, Mirai is a malicious program that attacks the Internet of Things (IoT)
devices and makes them controlable by a remote host forming, e.g. a botnet. These
devices then can be used for large-scale coordinated attacks on networks. For example,
a recent large-scale attack on Dyn DNS services affected hundreds of popular websites
through such compromised devices [2]. A cyber-security firm McAfee has shown
that 2.5 million Internet gadgets were infected by “Mirai” malware in 2016 [3] and
five IoT gadgets are added to the Mirai botnet each minute [4]. In view of the
threat landscape, organizations and individuals are increasing their spending on
cybersecurity. For example, in 2017, Gartner expects the cybersecurity market to
be worth 90 billion USD [5]. Despite the increase in cyber security expenditures,
there has been a 24% increase in malware detected in 2016. Furthermore, in 2016,
Smartphones and Tablets malware increased by a massive 99% with 179 new cyber
threats per minute [3][4].

The conventional security typically employs network-based solution tools such as
firewalls, intrusion detection, virus detection, and DDoS mitigation to protect the
hosts. However, a common theme in information and network security is sparing
co-operation in security measures. The prevalent attitude is that an organization or
its security administrators care about the security of hosts and networks within their
purview, without considering the fact that networks are interlinked and malicious
traffic and software can and do spread. The amount of co-operation is usually
limited to sharing vulnerability information and co-operating with the country-
specific Computer Emergency Response Team (CERT). This cooperation, although
welcome, is too little and more cooperative network security is not only possible but
needed [6].

2

1.1 Research Problem
The above mentioned security solutions generally provide network-based security and
lack the detailed knowledge of traffic expected at an individual host or its service.
Thus, there is a challenge to design mechanisms that can make network-based security
methods aware of interests of each host or its services, so that these interests can be
protected and executed over the Internet.

An aspect to the problem is enriching network edge devices. To this end, we
propose Customer Edge Switching (CES) to overcome the shortcomings of Network
Address Translation (NAT) [7]. It has security features which are more comprehensive
in nature and can protect the interests of the served entities over the Internet. CES
establishes a connection between end users and public networks through implicit
signaling. It allows the end user to control flows emanating from the Internet to
his host. Within CES, every flow is admitted by policy and the source of the flow
can always be immediately traced back to its source network; this makes simple
flooding DDoS attacks infeasible. Additionally, network-based security at CES with
full knowledge of Apps running on end hosts will admit exactly the desired traffic
and drop all flows that are not expected.

1.2 Objectives
The goals of the thesis is to:

1. Design and implement utility tools that can be used to bootstrap a policy
management system that needs full knowledge of the Apps that are installed
on end-user devices.

2. Store applications information into a database for further validation.

3. Provide a web tool for end users to set security or reachability policies for their
Apps. This policy is then stored in the policy database.

Since hosts cannot be fully trusted as they are vulnerable to malware and any
layers within the communication stack can be infected, this implies a concern on
how to prevent malicious packages or payloads from infecting the network-based
policy management system. In this thesis, an initial system of bootstrapping the
policy management system was created. Another aspect of the policy bootstrapping
problem is that the end users might want to modify the policies created by any
automatic tool or installation. We designed and implemented rudimentary tools that
can be used for this purpose by the end user. The user modified policies are stored
in the policy database for further processing in network-based tools. Our work take
into consideration the possibility of hackers trying to infect the policies but this
thesis leaves comprehensive analysis and testing of this question for future work.

1.3 Scope
In this thesis, a utility tool is developed, that runs on Linux and Android and will
seek to gather all the required information about active apps installed in the system

such as local IP address, local port, remote IP address, remote port, the protocol
used, status of the connection, FQDN and signature of the app. This utility tool
together with the web tool will allow the user to set the policies for her devices. The
utility tool designed is meant for enhanced mobile broadband devices rather than
IoT devices.

1.4 Structure
The thesis is divided into following chapters.

The second chapter covers device security and the general principle that guide
cyber and gadget security. Security vulnerabilities of Internet devices along with
prevention techniques are also covered in this chapter. Chapters 3 is concerned
with the fundamental principles of the Internet protocols, how devices manage and
transfer information in the web

Chapter 4 introduces the concept of customer edge switching. Chapter 5 presents the
concept of policy and policy-based model. This chapter highlights the IEFT policy
management architecture.

Chapter 6 presents the architecture of the Policy Creation and Bootstrapping System
(PCBS) and describes the components of the PCBS. Chapter 7 discusses the result
of performance test of the PCBS. Finally Chapter 8 concludes the thesis.

1.5 Contribution
The developed software was published under GPLv3 in Github
(https://gitlab.cloud.mobilesdn.org/CES/policy_tools/).

4

2 Basics of Computer Security
This chapter is concerned with attacks and security of computer systems. The chapter
discusses the device vulnerabilities to threats posed from the Internet on Android,
IOS, and Windows devices. Finally, the prevention technique used against attacks
will be introduced.

2.1 Device security
Broadly, device security is defined as the measures or steps to protect the computer
system and the data stored in it [8]. In the recent past, some malwares encrypted
the victim’s data, thereby denying access to it and demanded a payment in order for
the victims to re-access their data. Victims in this scenario varied from private firms
to critical government departments, such as health organizations. The attack was
subsequently blamed on ransomware [3].

In the context of computer science, computer security is “the ability of a system
to protect information and system resources with respect to confidentiality, privacy,
and integrity” [9].

2.2 Principle of security
Device security can be summarized but not restricted to three main aspects: CIA.
That is confidentiality, integrity, and availability.In addition, authenticity, non-
repudiation and access control are some of the principles of security [9]. We discuss
these principles below.

2.2.1 Confidentiality

The word confidentiality and privacy are often used interchangeably. In terms of
device security, confidentiality means keeping data private and ensuring restricting
access by only the authorized individuals. A cyber security system will seek to ensure
that clients data is not vulnerable to unauthorized third-parties.

2.2.2 Integrity

Integrity is one of the computer security principle involving to keep the information
accurate, consistent and trustworthy. It refers to the state of data which, during
processing, storage or transmission, shall not be subjected to any unauthorized
changes. This implies that only authorized persons have an access or ability to
modify the information. The integrity is violated when the information is corrupted,
disrupted or damaged.

2.2.3 Availability

The principle of availability ensures guaranteed access to the data at all times to
the authorized users. It deals with measures against delayed access of the data and

5

protection from unauthorized retention of the data. It guarantees that clients have
control over their own information and can use it in the best way possible.

2.2.4 Authenticity

The principle of authenticity means that only legitimate users access the data or the
system resources. In other words, It ensures that exchange information or transaction
is from the source it claims to be from. This principles involves proof of identity.

2.2.5 Non-repudiation

This principle ensures that a person or process engaged in a communication can not
deny having received or sent a message.

2.2.6 Access Control

This principle defines what information or resources an entity can access and what
she can do with the information.

2.3 Principle of security
Operating system (OS) is the software interface that acts as an intermediary between
the system hardware and the system user. It manages system resources, controls
input and output, memory allocation and monitors peripheral devices. Figure 1
presents the common structure of computer system. Today, there are many types of
OS such as Android Mobile OS, Linux OS, Apple mobile OS, Windows phone etc.
This thesis discusses the architecture of Android Mobile OS and Linux OS, as well
as their vulnerabilities and threats.

Figure 1: Common structure of a computer system [10]

6

2.3.1 Linux architecture

Linux computer system comprises of different layers which have their own features
and mechanisms to enable communication. At runtime, Linux can be classified into:
User Mode and Kernel Mode [11]. Figure 2 presents the general architecture of a
Linux system.

Figure 2: Architecture of Linux system

As shown in Figure 2, the user applications run in the user space . The GNU C
Library in the user space serves as an interface between the user application and the
kernel. The Kernel space is below the user space and above the hardware platform.
It allows Linux to work on multiple hardware platforms. Moreover, the system call
interface and the kernel itself are located inside the kernel space. The hardware
platform which includes physical devices of the end system i.e. keyboard, mouse, a
network card are located at the lowest level in the architecture.

The kernel internal architecture is layered into many different subsystems. Each
subsystem provides specific functions and services to other subsystems. Figure 3
shows the internal architecture of Linux kernel.

7

Figure 3: Architecture of Linux kernel

Properties of Linux kernel

Linux kernel properties component are defined below:

Process management

The process management is the most critical subsystem of the OS. Its functions can
be classified into three parts:

1. creates and destroys processes and also handles their connection with I/O
peripherals.

2. the process manager is used to perform communication between different
processes.

3. process scheduling controls how the processes will be sharing the CPU. A
process is defined as a set of running programs in memory. The process is
assigned a numerical value called process identification (PID) to uniquely
identify a single process in OS.

Memory management

Memory management is another important subsystem that manages the memory in
the kernel. It monitors the allocated space in the system, which memory space is
allocated for a process and decides the amount of memory that should be given to a
process. This subsystem also manages physical and virtual memory and gives larger
virtual address space, reasonable virtual physical memory allocation and protection.

8

Virtual memory allows the system to seemingly have more memory than it actually
has in Random Access Memory (RAM).

File system

Linux heavily depends on the file-system. In Linux, everything is treated as a file.
The concept of the file-system is not only applicable to the text files, but also covers
images, compiled programs, partitions, directories, or hardware device drivers. A
file is defined as a data container that is structured as an ordered string of bytes.
Moreover, a file is located following a tree-structured space where the name uniquely
identifies the file in the directory where it is located. In Linux, the root is the source
for all resources files and it is noted as (/). Anything addition to the root is referred
to as sub-directory and each sub-directory can have further sub-directories. Figure 4
presents a directory tree in Linux system.

Figure 4: Directory tree in Linux system

Some of the sub-directories are:

• /bin, command binaries for all users

• /boot, boot loader files such as the kernel

• /home, users home directories

• /mnt, for mounting disk storage

• /root, home directory for the root user

• /sbin, executables used only by the root user

• /usr, where most application programs get installed

In the kernel, each file is identified by a unique number rather than its name.
This unique number is called inode. Each inode has an entry in the array of inodes
that have the information required to access the file [12]. The list includes:

9

• The inode number which is related with a particular file

• The owner of the file which is a user or a group of users

• The type of the file (device, directory, pipe, ...)

• The file creation, access and modification times

• The size of the file

• The pointer to data blocks that store the file’s content

Device driver

Most of the source code in the Linux kernel exists in device drivers. Each driver allows
a single hardware device to be used. There are many types of devices connected to
computer systems: CPU the brain of the system, network devices, storage devices
and also human interface devices like keyboard, mouse, and screen. The device driver
is an abstract layer between the concept of software and hardware (that gives a
defined interface to a higher level application so that the device operation details are
hidden).

Networking

The networking subsystem is an abstract layer that is responsible for providing the
network connectivity between the Linux system and other devices. The subsystem
follows a layered architecture design that consists of three layers. The sockets
layer is the highest layer in the architecture that provides the standard API to the
networking subsystem and gives a user interface for a variety of networking protocols.
The protocol layer is below the socket layer that consists of transport and network
layer protocol. The Internet Protocol (IP) is the core network layer protocol that
is located below the transport protocol. The low level is the lowest layer in the
architecture that gives access to the physical devices.

2.3.2 Android architecture

Android OS is based on Linux kernel and created by Google. Android uses Linux
kernel version 2.6 for the core system services such as memory management, security,
process management, network stack and driver model. In addition, Android OS has
four layers and each layer has its own features [13]. Figure 5 presents the components
of the Android system.

At the bottom layer of the Android architecture is the Linux kernel which provides
the basic functions such as device management, inter-process communication (IPC)
and memory management etc.

Above the Linux kernel, there is a set of libraries written in C or C++ i.e., an
SQLite database which is used to store the information of the applications. In the
same layer, there is a section called runtime which has two boxes including Java

10

libraries and Dalvik Virtual Machine (DVM) sandbox which is used to support
Android application sandbox.

The application framework is the third layer from the bottom. This layer pro-
vides many higher level services to the user application. The services of application
framework include:
Activity Manager: This service monitors all aspects of the application lifecycle
and activity stack.
Content Providers: It is a service that enables applications to publish and share
information with other applications.
Resource Manager: This service gives access to non-code embedded resources such
as strings, user interface layouts, and color settings.
Notifications Manager: It is a service that enables applications to show alerts
and notifications to the user.
View System: It is an extensible list of views used to create user interfaces of
applications.
Package Manager: This service provides various type of information related to the
application packages that are currently installed on the android device.

The Applications are located at the top layer of the architecture. This is the
layer where the device users can install applications. Moreover, these applications
can come from the official applications stores or third-parties.

Figure 5: Internet architecture of Android [13]

11

2.4 End system vulnerabilities and threats
This section will discusses the type of vulnerabilities in the end user device and
different attacks used against the device.

2.4.1 OS vulnerabilities

Today, mobile devices are often connected to Internet making them vulnerable to a
number of threats that target the device’s operating system. At the same time the
malware industry is also growing both in terms of technology and structure. The
threats can be broadly categorized into three categories: Malware, Vulnerabilities,
and Attacks.

Malware

A malware is a malicious software aimed at gaining access to private information
so that it can be destroyed, duplicated or altered. Malware can also make the
information unusable by the device users or cause device breakdown [14]. Malware
is usually not installed by the user but gain access to the system through Internet
connection taking advantage of the vulnerabilities in the operating system. Most
common forms of malware are the viruses, Worms, Trojans and Spyware. The first
case of malware for smartphones was reported back in 2004 where a malware known
as Cabir was created for the Symbian operating system[15]. The most affected
smartphone by this malware was the Nokia 60 series. This worm used Bluetooth
connection to spread itself. An infected phone can easily be known as it creates the
word “Cabire” on the screen. Apple Inc. phones are more protected from malware
owing to their closed system. Android OS is specifically targeted by malware because
of the possibility of installing applications from many insecure third-party sources
and because of its large market share.

Trojans

A Trojan horse is a malware program that poses as a legitimate program. It is
disguised as a legitimate software and end users are easily tricked into running it on
their systems. After users install the dummy app or save the file, the Trojan assumes
control of the device, and the device security is compromised.

The main use of the Trojan software is to seize the device management and
control information rather than to spread itself. It is in this sense that they differ
from worms and viruses [15]. They are transmitted under the cover of other files
and often unintentionally activated by the user. Once activated, they get the full
control of the device in the background making them hard to detect. To minimize
the risk of Trojan software, it is of utmost importance that downloaded application
is checked and verified for its correctness. Android users should limit their source for
applications to Google App Store. Even though there can be buggy applications on
playstore.

12

Virus

Mobile viruses are malicious software that infect devices when executed by replicating
themselves through modifying existing programs and subsequently inserting their own
code. There are however fewer viruses that can attack mobile devices as compared
to computer devices, but this will change especially with the rise in mobile device
usage and the complexity of mobile operating systems.

A virus has the ability to transfer itself between the existing documents and
changing their locations [15]. It can also distort the information in the documents
making them unusable to the user. Virus may cause the phone applications to be
unresponsive or slow. Virus is however easy to detect, unlike the Trojan malware.

Worm

A worm is a self-replicating computer program that attacks an operating system by
sending copies of itself to other devices within the network. Worms mainly consume
bandwidth in the mobile devices and might even be capable of compromising the
integrity of stored files.

When a worm infects the device, it will replicate itself and over spreading to
other devices within the network. A malicious code in the worm called the payload
might compromise the integrity of the data or even launch a ransomware attack.

Worms do not require the users’ interaction to cause the damages to the mobile
device as they are transmitted using text messages or picture messages. Worms are
in fact a kind of virus, only that they do not require users’ intervention to harm the
mobile devices.

2.4.2 Hardware vulnerabilities

In regard to hardware vulnerabilities, the first consideration which causes the problem
is age of the mobile device. This is because, the device manufacturers do not support
the devices after certain date. The older devices therefore, do not receive the latest
security updates from the manufacturer. The second issue is the inability of the
device in assuring, the safety of the ports used to connect to a network. Due to the
lack of navigation limit used in the Internet’s environment and the lack of firewall to
control the navigation creates a vulnerability to the mobile devices. A hacker can
therefore easily gain access to the mobile device using the insecure port [9]. The use
of a firewall software reduces the risk of remote access of the device as it requires the
user to have permission to connect to the specific Internet device. Another challenge
comes from Jailbreaking which is the process used to download an application on
Apple iOS that does not belong to the Apple iTunes store. This method causes
unauthorized changes on mobile devices that do not have a firewall. Jailbreaking
makes the mobile device vulnerable to threats because the jailbroken device cannot
receive security updates from the manufacturer.

13

2.4.3 Application/ Software vulnerabilities

The out-datedness of the operating system poses a security threat to mobile devices
[16], since it contains many unpatched security vulnerabilities from old software
[17]. Another challenge comes from applications installed. Android OS supports
the installation of applications from Google Play or any another file system. The
downloads from Google Play are all secure because the packages Android Package Kit
(APKs) are from a protected area. However, APK files downloaded from third-party
app stores and local storage units such as SD card are usually unprotected, hence pose
a security threat to the mobile device. Security firms try to meet such vulnerabilities
through new versions or patches. Another vulnerability of mobile devices is brought
about by shared open source software (OSS). OSS is software that has its source
code freely available to anyone. The design of OSS system usually contains some
common open source components such as Linux and Web Kit. Such components
have a reusable structure so as to minimize the costs, a common practice by the
manufacturers of large open source systems like the Android. When a vulnerability
is discovered in the Android OS due to the use of Web Kit or Linux, a patch was
created in order to solve this problem in the mobile devices. But this problem also
affected Apple’s iPhone-like Web Kit and BSD kernel derivative [18]. At this point,
the problem is not the reuse of the component but rather where it is applied.

2.5 Attack types
The attacks can be classified into active and passive attacks as shown in Figure 6 [19].
A passive attack involves interception of data without changing the collected data and
the various techniques used for the interception include sniffing, keyloggers, traffic
analysis and release of the message. A active attack can be classified into three main
categories which are interruption, fabrication, and modification. The techniques used
in the interruption are Denial of Service (DoS), Structured Query Language (SQL)
injection attack, Distributed Denial of Service (DDoS) and Distributed Reflection
Denial of Service (DRDoS). In fabrication, the techniques used include replay attack
and masquerading. Lastly, man in the middle attack technique is used in modification.

Passive attack

A passive attack is an attack where an attacker listens to the communication between
two communication parties and records the information. However, the attacker does
not alter the recorded data and that makes it difficult to identify this type of attack.
Examples of passive attacks include sniffing, keyloggers, traffic analysis and release
of message [19].

Sniffing

Sniffing is a type of passive attack where an attacker captures the information that is
being sent from one device in the network to another device in the network without

14

Figure 6: Classification of Network Security Attacks [19]

the consent of the sender or the receiver. The data gathered by this malicious user
may include usernames and passwords which will allow the attacker to have access
to a network or computer.

Keyloggers

Keyloggers illegally install a software on the victim’s machine that will record
keystrokes entered by the victim. A keylogger is often seen as a professional tool but
it can be used for a criminal purpose such as capturing sensitive information (e.g.,
password, bank details).

Traffic analysis

By traffic analysis, the attacker captures encrypted information on a communication
channel and extracts the data using traffic analysis tools. Figure 7 depicts an example
of traffic analysis attack.

15

Figure 7: Traffic analysis attack

Active attack

An active attack can use the data recorded during a passive attack, such as usernames
and passwords. It may alter the information. An active attack poses various threats
such as DoS, SQL injection attack, DDoS, DRDoS, replay attack, masquerading and
man in the middle attack.

Denial of service attacks (DoS)

DoS attack is one the most common attacks on the Internet. The goal of the
attacker is to make the services or resources unavailable to legitimate users for an
indeterminate period of time. This type of active attack can occur in several forms.
The malicious user can flood the victim computer with many connection requests that
the victim cannot handle. This will result in blocking all the incoming connection
requests to legitimate users since the server has several connection requests from
the attacker that have not been completed. Additionally, DoS is a costly type of
attack since it interrupts the normal course of business transactions; the organization
may lose money. DoS attacks can be combined with other types of attacks such as
Synchronization attack (SYN) and Internet Protocol (IP) spoofing.

Distributed denial of service attacks (DDoS)

DDoS is a type of an active attack, in which the victim host is targeted by several
machines. This attack is considered as the most devastating form of attack. DDoS
consists of three participants; which are the Master, the Slave and the Victim. The
Master is the initial source of the attack such as the attacker or machine responsible.

16

The Slaves are the vulnerable machines or the network that the Master gains control
of and to which it installs attack software. The Victim is the target host or server
that is being attacked. The Master commands the Slave(s) to launch an attack on
the Victim’s machine, since the attack comes from multiple hosts simultaneously, it
is very difficult to trace back or stop the attacker. In other word, the actual attacker
cannot be identified, even if the victim can trace back the intermediate sources [19].
Figure 8 depicts a scenario how the victim is being attacked by the malicious user.

Figure 8: Distributed Denial of service attacks

Distributed reflection denial of service (DRDoS)

This type of attack involves using DDoS technique by sending several spoofed request
to legitimate user machines. Moreover, in DRDoS attack, the attacker cannot be
detected due to spoofing [15]. An example of reflection attack is performed by sending
spoofed DNS queries with the victim’s IP address given as the source address. DNS
will then send responses to the victim.

SQL injection attack

SQL injection is a well-known method of attacking Web applications. This type of
attack uses a technique of inserting SQL code into a program or query or to inject
malware into a computer for remote commands that can read or modify a database
as well as to alter the data on the website [20].

Replay attacks

This attack allows attackers to duplicate a valid data between sender and receiver
and re-send a stream of data again to the receiver to prove his identity [15]. An
example of such an attack may occur between two communicating parties Bob and

17

Eve, where Bob is sharing his key with Eve to authenticate himself, but during
that communication process an attacker Ibra is capturing the communication and
duplicates the data so that he can authenticate as Bob to Eve later.

Masquerading

Masquerading is a type of active attack, where the attacker impersonates the identity.
This allows the attacker to gain access to the resources as a legitimate user.

Man in the middle attack

Man in the middle (MITM) is a type of attack in which a hacker listens to a
communication between two entities and impersonates both entities in order to get
access to the communication stream. This type of attack enables the attacker to
alter the information by pretending to be one of the parties [21]. Most "man in the
middle" attacks consist of listening to the network using tools such as a sniffer, ARP
spoofing or DNS cache poisoning, these tools will allow the attacker to control the
exchange traffic. Figure 9 presents MITM attack where the intruder intercepts the
stream of data between two communicating parties.

Figure 9: Man in the middle attack

2.6 Prevention mechanisms
These are protection measures implemented in a computer or device network system
to ensure the integrity of the system. Security solutions comprise of three basic
elements: prevention, detection, and response. In this section, we will delve into the
measures that can be used to ensure the security of our systems.

18

Signature

Since the hash value calculated over a message only ensures the integrity of the
message sent, when transmitting the message, the computed hash value is encrypted
with the sender’s private key, and in this way a digital signature of the message is
generated. The use of digital signature validates that the message has indeed come
from the expected source since only the claimed sender could have access to the
private key which generated the signature, the receiver decrypts the hash value using
the sender’s public key and the hash value is compared with recomputed hash value.

Firewalls

A firewall is literally a wall that isolates a private network from the malicious actors.
This isolation mechanism helps protect the private network from malicious attacks
from the public network [22]. The firewall has a set of rules and protocols that
filter and allow selective access to the private network. A firewall can be defined
as a combination of both hardware and software systems that are put in place in
order to protect from malicious intrusion from hackers in the external networks ,
where they are located. Firewalls, can be classified into: network-based firewalls and
host-based firewalls. Network-based firewalls are deployed within the network and
monitor traffic in and out of the network while host-based firewalls monitor traffic at
the host level [22].

Intrusion detection systems

Due to the limitations of the prevention mechanisms, new intrusions continually
emerge which creates the need for an intrusion detection system (IDS) [23]. The IDS
system detects any possible violations of a security policy by monitoring the activities
and responding to the ones it considers intrusive. Once an attack is detected in
the network, the response activity is initiated to prevent or minimize the damage
the intrusion caused to the system. An IDS also serves the purpose of providing
information about the intrusion techniques which is important in enhancing the
understanding of the attacks. Such information is also important in informing the
administrator for the prevention and mitigation procedures. This device or system
detects any unauthorized activity in the network traffic and reports it to the network
administrator. This is because all legitimate users have a limit to the resources which
they can access while a malicious user will show discrepancies and abnormal behavior
[23]. Intrusion Detection Systems can still be categorized into: Host Intrusion
Detection System (HIDS) and Network Intrusion Detection System (NIDS). HIDS
monitors any attack that targets the host while NIDS handles an attack against the
network [23].

19

3 State of the art in policy management
This chapter will present the concept of the policy and its properties. Next, an
overview of Policy Based System will be briefly explained. Finally, the chapter will
conclude by presenting IETF policy-based management system.

3.1 What is a policy?
Policies are developed in various technologies to control their behavior, and many of
them use a different types of definition. Therefore, there is no standard definition for
the policy e.g, Computer networking , each area has their own way of defining policy.

The Internet Engineering Task Force (IETF) tries to produce highly recommended
engineering documents that influence the design and usage of the Internet. Therefore,
they have published many RFC’s that covered policies and policy based system.
Some of the definition of the "policy" given by IETF are:

• A policy is a definite goal, course or method of action to guide and determine
present and future decisions [24].

• A policy is a set of rules to administer, manage, and control access to network
resources [24].

In policy-based network, a policy is a set of rules that governs choices and
behavior of a system. A rule defines the action(s) that must take place when specific
condition(s) exist.

Generally, a policy comprises of the principles and guidelines that enable adequate
management of a system. In cyber security, policies are often used to guide the
participating entity that operates within the realm of internet security. In a large
scale, these entities could be departments within the state working alongside private
institutions to make the global internet a more secure place to surf. Most nations
have an overarching umbrella cyber policy that influences how the different entities
cooperate, referred to as a Network security policy (NSP) [25]. NSP harmonizes and
outlines guidelines of policies along with how to enforce. It streamlines the whole
area and sets out the basic tenets and premise upon which the whole cyber security
infrastructure of a network or company is built.

There are many definition of policy in literature. For the purposes of this thesis
we define policy as a set of rules either on a rather abstract level of principles or on a
concrete level such that the rules can be directly executed by a computer system. In
some policy systems particular types of abstract rules can be translated to executable
rules using an off-line computer tool.

In this thesis, we are interested in creating policies that can actually be executed,
so more abstract rules that are meant for people to follow rather than computers to
execute are out of scope.

20

3.2 Policy classification
Policies can be classified into following based on their function and intent [26].

Configuration policy

Configuration policy describes the setup of a managed host. For instance, the per-hop
default sending behavior of a router can be indicated as a configuration policy.

Installation policy

Installation policy indicates what applications or software are allowed to be installed
on a device, and the setup of the components that perform the installation. This
policy commonly represents a particular administrative authorizations.

Security policy

This policy deals with verification that the end user is actually who he purports
to be by choosing and applying suitable rules such as authentication mechanisms,
allowing or denying resources. For instance, access list of network policy is a security
policy that defines the employees that are allowed or denied to enter a network.

Service policy

Service policy are used to indicate network or other services. This policy specifies
the services that are available in the network. For instance, a service policy may
indicate to allow only outgoing connection.

Usage policy

This policy defines a specific binding of application flow to the available services that
are set in the network. For example, a usage policy may specify to drop any VoIP
traffic that is consuming more than 10Mbps in the network.

Error and Event policies

Error and Event policies indicate the type of action that a system must perform when
an event occurs. For instance, a policy can be set in the event when the bandwidth
consumption of a host, alternatively the number of streams coming from a host, is
over the limit threshold level, shutdown the port to which the host is associated.
such policies will prevent the DoS attacks.

3.3 Policy properties
The most challenging aspect of managing modern information technology systems is
ensuring data security. Alongside other challenges, policy properties typically revolve
around issues concerning accessibility, preferences and security

21

Accessibility

Policy accessibility is the case where the system has set rules governing who or what
can have access to the private network. The duration of time such as rights are
available and when they are waived off.

Preferences

Preferences can be defined as user-specified settings of parameters in interactive
computer software. Preferences allow the end user to set many aspects of a session of
application behavior. For example, end users may want to set logging and notification
preferences, under this policy property the user will have the leverage to determine
what sort of notification he or she gets.

Security

In the context of cyber security, there can be network security policies and end user
security policies.

A network security policy basically helps in protecting a network device from net-
work security threats – both internal and external – from the organization or network
[27]. It is generally a document and varies based on the underlying environment,
organization and/or legal requirements. A network security is needed to streamline
security matters within the organization and prevent it from being ineffective. A
network security policy needs to meet certain criteria for it to be effective. It has to
be implementable through existing network technologies in the market that are also
appropriate. The network security policy must be viable with security tools where
it’s also feasible for the firm both in term of finance and technology. The policy has
to define demarcations of responsibility for administrators and end users alike.

End user security policies have to inspire a sense of security for consumers. Full
disclosure of vulnerabilities to the end users is key in boosting end user confidence.
Storage of personal data should be in open formats that are compatible and accessible
to the end users. Any form of encryption has to be performed at both ends of the
communication network. End user security policies should also be privacy friendly
that allows for trustworthy systems to be developed. There should be a deliberate
attempt made to protect the clients’ private data.

3.4 Policy-Based Model
Policy-based management is a promising model in the management and security of
enterprise network systems. This management model provides for the development
of complex systems which are able to deal with the ever-changing information
technology world. Policy-based management systems have been successfully specified
by organizations such as the Internet Engineering Task Force (IETF) and Distributed
Management Task Force (DMTF) [24].

In the policy-based model we define policies as event triggered condition-action
rules that can be adaptable management actions. These management actions in

22

a system may include server backups, user registration or software installations.
Authorization policies are used to define what resources a user can access in the
system, in addition, security management policies are required to define what happen
when a violation of security protocols is detected for instance a brute force login
attempt.

An important element of a policy-based management system is that it separates
the policies governing system from its basic functionality leading to lowered main-
tenance/upgrade costs and more flexibility. Enterprise systems may have millions
of users and resources. It is cumbersome to specify policies that govern individual
entities, therefore it must be possible to specify policies that govern a group of
resources or users. Policies are summarized and extracted from business goals and
agreement within relation.

A Policy-based model provides many benefits such as being easy to upgrade
and it’s extremely flexible and dynamic. This has motivated the deployment of
policy-based techniques for quality of service as well as for Service Level Agreements
(SLAs) .

Merits of policy-based management are enormous, for instance, in case of an
upgrade of a system we don’t need to recode but we simply add or modify new
policies, furthermore it is extensible to wishes of the users.

3.4.1 IETF policy-based management architecture

The IETF policy framework is a policy-based management system for providing
admission controls decisions in integrated management systems. The IETF policy
framework has four functional blocks: Policy Management Tool (PMT), Policy
Repository (PR), Policy Decision Point (PDP) and Policy Enforcement Point (PEP).
Figure 10 describes IETF policy framework architecture.

• Policy Repository (PR) is a database used for the storage of all policies. The
stores policies are access by the PDPs by means of repository access protocol.
IETF recommends the use of Lightweight Directory Access Protocol (LDAP)
[28]

• Policy Decision Point (PDP) retrieves policies and interprets them, it also
receives policy requests from Policy Enforcement Points and returns policy
decisions to them.

• Policy Enforcement Point (PEP) is a network devices such as a router, firewall
or host that is responsible for enforcing policy decisions when a criterion is
satisfied from the PDP. The PEP collects the information about the state of
the network and describes its network attribute or characteristics to the PDP.

• Policy Management Tool is a user interface for creating, viewing, updating,
enforcing and validating policies.

In accordance with the IETF policy framework, one PDP is responsible for more than
one PEP. The PEP tells the PDP what actions it is able to enforce and the format

23

Figure 10: IETF policy framework architecture

of how it wants the actions represented in the policies. The PDP is responsible for
making the high level decision based on the policies stored in the Policy Repository.
Additionally, the PDP is responsible for translating the policies into a language
that a network device can understand. The PDP and PEP are logical isolated [24].
IETF framework defines many protocols such as DIAMETER and Simple Network
Management Protocol (SNMP) as the protocol for policy exchange between the PEP
and PDP, however other protocol like HTTP may still be used [24][29].

The upsurge of the Internet and increased use of complex systems has motivated
a paradigm shift from the traditional centralized model to a decentralized paradigm.
The IETF defines an architecture of a decentralized system with distributed managers
who can also act in a manager role with all privileges as well as an agent role when
they are remotely controlled or observed

24

4 TCP/ IP model
This chapter will mainly focus on explaining the TCP/IP model . Next an overview
of NAT is presented. Finally this chapter will conclude with the discussion on the
Domain Name System (DNS).

4.1 Network and Protocol
A network connects two or more electronic devices physically (wired) or logically
(wireless) for the purpose of exchanging information. Examples of such devices are
computers or printers which are referred to as host in the network. Since the primary
goal of any communication network is to exchange information and share assets
between hosts, the network must follow specific rules. The set of rules is referred to as
network protocol, which allow to discover the resources that network shares between
communication hosts in order to ensure reliability and security in the network.

In 1978, the International Organization for Standardization(ISO) developed a
set of recommendations for connecting heterogeneous devices to a network which is
referred as Open Systems Interconnection model (OSI).

The Internet relies on TCP/IP model which was developed by the US department
of Defense Advanced Research Projects Agency (DARPA) . This model has 4 main
layers: the Application layer, the Transport layer, the Internet layer and the Network
layer [30]. Figure 11 shows the architecture of the OSI model and TCP/IP model.

Figure 11: Internet model

Network access layer

The lowest layer in the TCP/ IP model is the network access layer, as the name
suggests this protocol is used to connect to the hosts. It is also known as the host
to the network layer and defines the details of how data is physically sent in the

25

network including the details of how bits are signaled and the hardware devices that
interact directly with a network medium.

Internet layer

The second layer in the TCP/ IP model is the Internet layer. This layer is in between
the network access layer and the transport layer. The primary function of the Internet
layer is to pack data into packets known as IP datagrams [30]. These datagrams
have an IP address that is used to transfer them between hosts and networks. The
Internet protocol is used in this second layer. It is important to note that this layer
essentially holds together the entire TCP/ IP model.

Transport layer

The third layer of the TCP/ IP model is the transport layer. The transport layer
makes a decision whether the data should be transmitted in a parallel path or single
one [8]. Also, it is in charge of functions such as multiplexing, segmenting and
splitting, it is important to note that in this layer an application is able to read
and write the data. The layer also arranges the data in tiny packets that are sent
sequentially. Also, header information is added in this layer.

Application layer

The fourth and last layer of the TCP/ IP model is the Application layer. This layer
has protocols which define how host programs interact with transport layer services
to use the network. Protocols in the application layer include DNS (Domain Naming
System), HTTP (Hypertext Transfer Protocol), Telnet, SSH and many more common
protocols [30].

4.2 Internet protocol
Basically, the Internet protocol is the defined set of rules set to govern all Internet
activity. The main purpose of the Internet protocol is to facilitate the delivery of
datagrams from the sender to the receiver. This is achieved through a process called
encapsulation which roughly is defined as putting tags in datagrams, the tags, in
this case, are address information. The Internet Protocol specifies the addressing of
the datagrams, however, most networks combine Internet protocol with a protocol
known as Transmission Control Protocol (TCP). This protocol establishes a virtual
connection between two hosts. The current version of IP is IPv4. A new version,
called IPv6 is still under development and it is expected to solve flaws associated
with IPv4.

4.2.1 Internet Protocol version 4 (IPv4)

IPv4 was the first widely adopted version of the Internet Protocol by IETF. IPv4 has
shaped the establishment of the Internet. Under IPv4, Internet connected devices

26

are identified by IPv4 addresses. IPv4 addressing scheme identifies Internet device
interfaces uniquely and this facilitates the sending and receiving of information
without conflicts. Today, the most critical problems with this IPv4 is the depletion
of the address space, issues in efficient routing and lack of security. As shown in the
Figure 12, IPv4 has 32 bit addressing and the number of connected devices is raising
[31]. According to Gartner Inc [32], 6.4 billion devices were connected in 2016 and
forecast shows that the numbers of the connected devices will reach 20.8 billion by
2020. Several solutions have been proposed to tackle the IPv4 address depletion
problem. These solutions include Classless Inter-Domain Routing (CIDR), Network
Address Translation (NAT) which was developed as a short term solution for the
IPv4 address depletion problem and the Internet Protocol version 6 (IPv6) which is
the long term solution.

Figure 12: IPv4 packet header

In the classical Internet without NATs, routing is based on the destination address
and each packet is routed independently.

4.2.2 Internet Protocol version 6 (IPv6)

To solve the problems inherited in IPv4, the IETF began to develop IPv6 during the
first part of 1990s. IPv6 provides additional functionalities that include enhanced
addressing capabilities, built-in security and the integrity of communication. IPv6 is
the long term solution to replace IPv4. Figure 13 shows IPv6 packet header.

27

Figure 13: IPv6 packet header

4.3 Transport protocols
The transport layer has two protocols to facilitate the transfer of data packets:
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP
and UDP protocols provide a mechanism that can differentiate applications running
on the same host through the use of port numbers. In normal cases, there are
numerous applications running concurrently on a host and the TCP protocol helps
decide which application uses which port.

4.3.1 Transmission Control Protocol (TCP)

The Transmission Control Protocol is connection oriented meaning that it establishes
a connection before any transmission is carried. This protocol provides functionalities
such as reliability, congestion and flow control. TCP supports several fields for error
detection (the function that identifies receiving packets), acknowledgement (ACK
number that sends information to a sender that the packet was successfully delivered),
timers and the other header fields. Figure 14 presents the TCP header.

28

Figure 14: TCP Header

Source and Destination Port: is a numerical value that indicates the source
and destination port of a service or application.

Sequence Number and Acknowledge Number: ensure the reliability of data
transmission. The Sequence Number field is a 32 bit number used to keep track of
number of the bytes sent. The value of the sequence number indicates the location of
a single packet in the packet stream which has arrived. While the acknowledgment
number is also a 32 bit number indicates the next sequence number that the sending
device is expecting from the receiving device. For example, if the value in the
acknowledgment field is 1201, this means that all datagrams that were received are
less than or equal to 1200.

Data Offset: field sets the number of 32-bit words in the TCP header. This
field indicates where the data begins.

Reserved field: is 6 bits field reserved for future purposes. This field must be
set to zero.

Window field: is 16-bit, which corresponds to the number of bytes indicated in
the acknowledgment field which the source of this segment is willing to accept.

Checksum field: is a mathematical number generated by the protocol sender
to help the receiver to identify messages that are corrupted or tampered.

Urgent Pointer: is a 16 bits field which communicates the position of an urgent
data by giving its offset in relation to the sequence number. The pointer should
point to the next byte following the urgent data. This field is only interpreted when
the URG Flag is set to one and as soon as this byte is received, the TCP stack must
send the data to the application.

Options : fields are generally a multiple of 8 bits in length and can occupy space
at the end of the TCP header. All options are taken into account by the Checksum.
An option parameter always starts on a new byte. Two standard formats are defined
for the options:

• Case 1 - One-byte option.

29

• Case 2 - Option-kind octet, option-length octet, option-data octet.

The option length takes into account the option-kind, the option-length itself and all
option-data octets.

4.3.2 User Datagram Protocol (UDP)

Unlike TCP, UDP is connectionless protocol i.e., there is no pre-connection procedure
for sending data, and there is no guarantee of delivery of a datagram to its destination.
The arrival order of the datagrams may differ from the sending order. Figure 15
shows that UDP has simple header compared to TCP. It is not a reliable protocol
because there is no acknowledgement flag. But, UDP is faster than TCP since it does
not need to set up a connection before data can be transferred. However, checksum,
source port and destination port fields work same as in TCP and there is no need to
acknowledge the receipt of data [33].

Figure 15: UDP Header

Well known ports

These port numbers range from 0 to 1023; they are mainly used by system processes
in our case the Linux operating system. In this system, a process has to execute on
superuser privileges to be able to bind a network socket to an IP address using a
well-known port [33].

Ephemeral port

This a short-lived transport protocol port for Internet Protocol (IP) communications.
The port is allocated automatically from a predefined range by the IP stack software.
An ephemeral port is used by the Transmission Control Protocol (TCP), User
Datagram Protocol (UDP), or the Stream Control Transmission Protocol (SCTP)
as the port assignment for the client end of a client–server communication to a
well-known port on a server [33].

30

Source Port/Destination port

The source and destination port numbers are used to define the services that should
take place on the local or remote hosts. In TCP/UDP data communications, it is
the responsibility of the host to provide the destination and the source port number.
The destination port number will allow the host to select the device that it requires
while the source port is provided to the host server or in most cases the internet
server for it to give feedback to the correct session initiated by the other side [33].
The use of source and destination ports will allow the applications to know which
ports to use.

4.4 Domain Name System (DNS)
Domain Name System (DNS) protocol was developed to translate strings into numbers.
Humans are not good at remembering numbers, e.g, one cannot remember all the
contact numbers in one’s contact list. In the same way, we cannot memorize the IP
addresses of the websites. In the Internet, DNS translates the name, for instance,
’aalto.fi’ to IP address ’193.29.10.1’, to which a client can then sends the request for
the web page. DNS consists of three major components: Domain Name Space, Name
Server, and Resolver.

4.4.1 Domain Name Space

Domain Name Space has a structure of an inverted tree. The root of the tree (root
domain) is expanded by children (Top-level domain), which then contain many levels
of subdomains. Each node has a label of up to 63 characters. The set of domain
names consists of an inverted tree where each node is separated from the next by a
point ("."). The Fully Qualified Domain Name (FQDN) comprises of domain names
of a lowest branch in the tree to the top level domain including all the branches
separated by a “.”. FQDN is used to uniquely identify a machine on the network of
networks.

4.4.2 Name Server

A name server performs the server side operation in the DNS architecture. A name
server is a machine that has complete information about a zone of domain name
space that it is serving. DNS consists of two type name servers which are primary
and secondary name servers. A primary master server or master is a program that
creates, maintains and updates the information about the zone in the zone file on its
host. A secondary master server or slave also has an authoritative role in the zone
and it saves the identical information from the master.

4.4.3 Resolver

Similarly, a resolver acts as a client side in the DNS architecture. Each host has
been configured to send its DNS name queries to at least one DNS resolver. The
resolver performs various operations such as:

31

• Querying a name server for specific domain name and record type.

• Interpreting the reply which may contain a record or an error.

• Responding to the ‘host’ that requested DNS resolution.

4.5 Network Address Translation (NAT)
NAT was introduced as one of the short-term solutions to the address depletion
problem of IPv4 addresses, until the long-term solution with enhanced address spaces
is deployed [31]. NAT is a device or system in a router that allows a private network
to use private IP addresses for local communication, and a set of public IP addresses
to reach the public Internet. The private IP addresses can be reused in any local
network, and these local addresses are only locally unique while the public addresses
are globally unique. Besides the importance of these properties of NAT, it also hides
the private network from the public Internet.

4.5.1 How NAT works

A NAT acts as a bridge between private network and Internet. It has a translation
table that manages the connection state information which consists of information
such as the protocol used for the communication, source local IP address, source
local port, public IP address and public port. When a client inside local network
attempts to connect to a server in public network, it transmits IP packets to that
server. In order for the packet to get to its destination, it passes through the NAT
gateway. The NAT device changes the local source IP address and the local source
port of that machine with the public IP address and port number and saves the
connection state in the translation table. Next, the device sends the changed packets
to the required server. In the backward direction, the server responds to the public
address of the NAT. The NAT at the boundary of the private network maps the
modified address to the local address and forwards packets to the private host.

NAT devices can be classified into: basic NAT and Network Address Port Trans-
lation (NAPT). The first just performs IP-based translation services while the latter
makes use of port numbers as well to perform the address translation [34].

4.5.2 Problem with NAT

Assuming host-A in a local network behind NAT starts communication with host-B
that resides in the public network, the NAT device translates the private IP address
and the port of the host-A to the public address, public port and stores them in
the translation table. After recording information, the packets are sent out to the
destination. In the opposite direction, host-B sends replies to the NAT, which applies
the mapping before forwarding the packets to host-A.

In contrast, if host-B wants to initiate the communication, the packet will be
discarded because there is no connection state in the NAT table. This issue is referred

32

to as the “Reachability Problem”, which prevents a host on the public network from
being able to reach a host behind a NAT [31].

The reachability issue presented by NAT influences different protocols and ap-
plications in the public network. For instance, the protocol such as SIP has the
IP addresses in their payloads for the establishment of the connection. This is not
compatible with NAT. The reason for that is that NAT does not work above layer
4 and therefore it cannot alter the information in the protocol payload. Further-
more, NAT reachability issue affects the peer-to-peer applications since they required
bidirectional connectivity.

To solve the reachability problem, several NAT transversal protocols such as STUN,
TURN, and ICE have been developed [35][36]. The downside of this transversal
solutions to cope with the “Reachability Problem” is that first establishing reachability
requires a lot of application layer messaging, such messaging consumes time and
finally the method requires keep-alive signaling in order to avoid expiration of NAT
binding. This method does not scale well to mobile devices.

33

5 Customer Edge Switching
This chapter will mainly focus on explaining the concept of Customer Edge Switching
(CES). An overview of CES architecture will be presented. Finally, the chapter will
conclude with the discussion of the protocol used in CES.

5.1 Motivation
The rapid increased in the number of users, servers and connected devices on the
Internet have caused the shortage of IPv4 addresses. The adoption of NAT slowed
down the exhaustion of IPv4 by enabling several hosts in the private network to share
or reuse set of public IP address. The deployment of NAT on the Internet alleviated
the IPv4 address exhaustion problem, but introduced “Reachability Problem”. This
problem prevents a host on the Internet from being able to reach another host behind
a NAT. In order to solve this NAT reachability problem, several NAT traversal
solution such as TURN and STUN have been developed [35][36].

The downside of this NAT traversal methods is that they do not scale well with
mobile devices because the keep-alive signaling is required for mobiles phones to
avoid expiration of the NAT binding, which consumes the mobile battery. Customer
Edge Switching has been proposed and implemented at the COMNET department of
Aalto University to replace NAT device and to overcome the problems introduced by
NAT devices. CES makes use of global unique domain names to identify end-hosts
and afterward uses local or public IP address to address an end hosts. The aim
of CES is to solve the reachability problem and to create trust between customer
networks and provide end-to-end connectivity as well as to improve the security on
the Internet. Additionally, CES is seen as a suitable solution for mobile devices,
since it does not require any keep-alive mechanism.

5.2 Architecture
CES architecture classifies Internet into: Customer Network (CN) and Service
Provider Network (SPN). Several hosts may be connected to different CNs; each
of these CNs is independent of each other and has at least one CES device. The
CES device may have one or more interfaces that provide connectivity between CN
and SPN networks. A CES device contains a firewall, a pool of private IP addresses
which is referred to as a proxy address and a pool of public IP addresses for NAT
like operations.

CES uses IDs for end hosts or services identification. These IDs may be provided
by the service provider or internal program of the CES device, or generated from
unique host name by applying a hash function. CES devices uses proxy address from
the available pool of addresses to represent the remote user in the private network
technology. The CES device residing at the network boundary contains a translation
table which manages connection state information that allows packets forwarding
between sending and receiving nodes [37]. Figure 16 illustrates the architecture of
CES.

34

Figure 16: CES architecture

5.3 Communication in CES
The Customer Edge Switching mainly relies on DNS, any communication between
hosts that are behind CES is triggered by the DNS name resolution. A valid domain
resolution operation leads to a legitimate state in CES, acquiring a proxy address and
thereafter, forwarding of the data packets. Communication in CES can be classified
into three categories: Inter-CES communications, Intra-CES communication and
packet forwarding across PRGW.

5.3.1 Inter-CES communication

Inter-CES communication occurs when the two hosts communicating are behind
different CES devices. The source starts by performing DNS NAPTR resolution with
a specific end goal to identify the CES-ID that hosts the destination domain. This is
followed by both sender and receiver CES completing the connection establishment
procedure based on the host admission policies. A connection state is created in each
CES device after a successful policy negotiation occurred, where CES acts as the
gateway to the remote host that uses a local proxy address. Next, the DNS response
that carries the destination proxy address is sent to the source, and both parties
send to each other using the states created in CES devices [37].

As shown in the Figure 17, when Host-B that is located behind CES-B wants to
communicate with Host-A that is located behind CES-A, Host-B begins by sending a
DNS query to Host-A. Since Host-A and Host-B are in the different private network,
therefore CES-B sends the DNS query to the DNS server which then further forwards
it to the DNS server that is situated in CES-A depending on the DNS server NS
resource record. The DNS response from CES-A transports both the routing locator
(RLOC) and CES-ID information corresponding to the destination host.

35

Figure 17: Inter-CES communication

The outbound CES (oCES) identifies the remote CES based on the identifier
in the DNS Naming Query Pointer (NAPTR) response, and begins the connection
establishment procedure using CETP protocol to negotiate admission policies with
inbound CES (iCES). When the policy negotiation process between the two CES
devices completes, the DNS response from the local CES conveys the proxy address
of the destination to the source, and creates a binding between the local and public
IP addresses. After establishing the connection between CES, source and destination
hosts can send packets to each other using CES devices.

5.3.2 Intra-CES communication

Intra-CES communication occurs when the two hosts communicating are behind the
same CES device. Unlike Inter-CES communication, the CETP policy negotiation
happens locally. However, since all the packets pass through the CES device, the
direct communication between the hosts is restricted.

An example of such communication can be explained as, Host-A and Host-B
that are located behind the same CES want to communicate. Host-A initiates the
communication by issuing the DNS query for Host-B. The CES allocates IP addresses
for both Host-A and Host-B. The addresses are used to create a mapping in order
for the hosts to communicate via proxy addresses. After this, the CES sends DNS
response to the source with allocated proxy information that will be used to send
packets to the destination [37]. This model works even in the case that Host-A and
Host-B are in separate private address spaces.

36

5.3.3 Packet forwarding in PRGW

Another type of CES communication is know as Private Realm Gateway (PRGW),
which allows a legacy host residing on the public Internet to connect to a host behind
a CES device and vice-versa.

In addition, PRGW also serves as an authoritative DNS name server for the
domain hosted in the local network. This allows PRGW to be able to resolve a DNS
request received from a host on the public Internet. A legacy host residing on the
public Internet just requires to send a DNS query to access the destination domain
behind the PRGW, after receiving the DNS query, PRGW reserves an address from
the circular pool.

Figure 18 depicts the detailed operation of PRGW for an inbound connection
where Host-P on the public Internet sends a DNS query to resolve the name of
Host-A, which the DNS server forwards to the CES where the Host-A is located. The
CES keeps the next available address from its circular pool and sends back the DNS
response transporting the address reserved to the Host-P. When Host-P receives the
DNS response, it sends the data packet to the address reserved for the destination.
The data packet is then forwarded to Host-A after mapping the public address to
local address. In the backward direction, the Host-A response is sent to Host-P after
the mapping of its private address to public address at the PRGW. More detailed
on PRGW is described in [37].

Figure 18: Communication in PRGW for inbound connection

5.4 Customer Edge Traversal Protocol (CETP)
Customer Edge Traversal Protocol (CETP) is basically a tunneling protocol providing
communication between CES devices. The protocol has been developed gradually

37

since it was first implemented by Pahlavan. However, CETP is still in development
stage and may be subjected to more changes later on. In this section, an overview of
the present CETP is discussed. The details about the first version of CETP protocol
is described at [38].

CETP is designed to facilitate the transmission of packets between different CES
nodes while still carrying the source and destination IDs. When CETP connection
establishment is successful, an edge-to-edge connection is created where session
identifiers are used to identify different user connections. In addition, CETP is a
protocol that controls signaling between CES devices, it can be described as an
edge to edge protocol for tunneling packets from one customer network to another
customer network, in this case, each network is given its own local address space.

CETP is part of the Internet Trust Framework (ITF) which aims to discourage
the business of creating unwanted traffic by making it unprofitable [39]. CETP
protocol provides both tunneling and signaling between customer networks, this helps
to implement the idea of collaborative firewalls. The protocol can be implemented
to solve issues such as isolation of customer and core network, trust improvement in
customer network gives the receiver edge tools to combat spoofing before the flow
admission to the receiver.

A CETP packet consists of a mandatory 32-bit fixed header, source, destination
session tags and a set of control TLVs. CETP packets are agnostic to the underlying
technology and can be transported over a number of network and transport protocols,
i.e. Ethernet, IPv4, IPv6, TCP or UDP [40]. The control TLVs consist of three
segments which are the type, length, and value. The value of length bytes is always
padded to a 4 bytes boundary for faster processing with a minimal impact of overhead.
The operation field carries query, response or information that notifies the remote
end about the type of operation. A policy in CETP consists of three different vectors:
offer, requirement and available. Each of these vectors store the TLV components
used to define a specific policy.

5.5 Conclusion and research questions
Having briefly described the concept of Customer Edge Switching it is time to
summarize and recap our research questions.

CES is a new architecture for Internet communications that prior to communica-
tion from host A to host B allows establishing a chain of trust between the hosts
on a given level of assurance. The level of assurance is defined by the respective
communications security policies of the sender and the receiver. The role of the
CES nodes is to establish long lasting identities for the hosts so that it is always
possible to immediately trace back a misbehaving or malicious host once it has been
identified in the remote network. Moreover, a CES node can push the responsibility
for containing the harm caused by a malicious host to the CES node serving that
host.

With this background in mind, it is important to study how is it feasible to
create policies in the case of smart phones and mobile broadband services to the
mobile users? Is it feasible that each host will have a separate policy that exactly

38

reflects what the host is expecting to see in the Internet traffic and thus eliminate
all unexpected traffic from entering the air interface or waking up the mobile device?

We will assume that the end users have limited technical skills and it would be
infeasible to require them to create the policies from scratch. Instead, the policy
creation should be as automatic as we can make it. The user should deal with the
policies on a level of natural user decisions such as:

• Do I want to receive calls or messages at night?

• Do I want to block some App entirely for the time being?

• Do I want to adopt the default policy for a specif App?

This thesis studies the question of policy creation in Android and Linux based
devices. The idea is to glean as much information as possible from the devices and
store that to a database for further processing by cloud based policy management
System (PMS). The interface to the cloud based PMS was developed during this
thesis but the actual further processing is out of scope in this thesis.

The Policy Apps developed in this thesis aim to get full information of all Internet
connected applications and stored it in User Policy Database (UPD). The stored
information are then used by the end user to set her own policies that are later
pushed to the PMS. A policy is valid when it is stored in the PMS.

39

6 Implementation and Evaluation
This chapter first gives an overview of the overall architecture of the CES policy tools.
Next, we present Policy Creation and Bootstrapping System (PCBS) implemented
in this thesis with its various components. Finally, the tutorial on how to use the
developed system is described.

In an attempt to overcome the shortcomings of Network Address translation
(NAT) and protect the interest of the served host over the Internet, CES aims to have
tools such as PCBS and Policy Management System (PMS) to allow the end user
to set the policy for her device. Figure 19 represents the overall architecture of the
CES policy tools. The PCBS is sitting between the end-user device and PMS. The
PCBS populates the PMS which also is populating the CES network-based solution.
The separation of PCBS from the PMS can be explained as a security measure e.g.
an attack or failure of PCBS will not affect policies that are already in the PMS.

Figure 19: Overall architecture of the CES policy Tools

In this thesis, we developed PCBS which provides the end users with the ability of
setting her own policies for the applications installed on the device and thus control
who she communicates with. The solution architecture used in this thesis work
comprises of four different components listed below as shown in Figure 20.

1. User Policy Agent (UPA) comprising of Policy App and Policy Interface

2. User Policy Server (UPS)

3. User Policy Database (UPD)

4. Policy Management System (PMS) client

40

Figure 20: Architecture of PCBS

6.1 User Policy Agent (UPA)
A User Policy Agent comprises of a Policy App and a Policy Interface. The Policy
App is an application running on the end user device and its function is to collect all
necessary information about the active apps installed on the device. In this thesis,
we define active apps as Internet connected apps which include any client server
applications that are currently running on user’s device. Client server apps are any
applications that listen and can send/receive traffic from/to outside a network. The
gathered necessary information by the Policy App includes: FQDN, Application name,
IP address, Application Port number, remote IP address, remote port number of the
application server, protocol used and the status of the communication. Figure 21
shows the data flow between Policy App, UPS and the User Policy Database (UPD).
The Policy App uses a REST API to send the collected information or payload to
the User Policy Server (UPS) which performs operations such as processing, storing
and deleting information in the User Policy Database (UPD). The UPS sends replies
to the Policy App for both successful and unsuccessful operation. The unsuccessful
operation occurs when the server is down or the user does not send using required
format of the data.

Figure 21: The data flow between PCBS components

41

The author of this thesis developed Policy App which is available for two platforms,
Android and Linux operating system. The Android and Linux UPAs are described
in the following section.

6.1.1 Linux Policy App

The Linux Policy App is an application designed for Linux systems and runs on
python 2.7. This app collects network information on intalled Apps. The application
works similarly as the Linux netstat command. It reads information about the
running applications from the proc/net/protocol pseudo-file system based on the
protocol, which can be TCP, TCP6, UDP or UDP6. The read function returns an
array of a dump of the active protocol socket table in hexadecimal format which is
later converted to decimal. An extract of the output in hexadecimal format is shown
in Figure 22.

Figure 22: The output format of the Proc/net/protocol pseudo file system

An explanation of the information headers is shown in Table 1.

Header Description

sl kernel hash slot for the socket

local_address the pair of local address and local port number

rem_address the pair of remote address and remote port number

St The status of the current open socket of the application

tx_queue kernel memory usage based on the outgoing data queue

rx_queue kernel memory usage based on the incoming data queue

tr, tm->when, and rexmits contains the internal information of the kernel socket state

UID holds the UID of the application

Inode describes the file directory

Table 1: Header of proc files

42

An application on a user device has life cycles or processes which include down-
loading, installing, using, upgrading, and deleting of the application as show in the
Figure 23. Downloading is a process in which the end user gets the application file
or program e.g APK in android from the author repository. Installing process is
the act to make the downloaded program ready to execute on the device. Using
process makes the application to perform a task. In this process there are two types
of state which are active and idle. Active state is when the application is running
e.g App is connected to the Internet and can send/receive traffic. Idle is when the
installed application is not running. Upgrading process is when the application
is being updated by the new version on the device. Deleting is the process that
removes the installed application completely from the user device. In our case the
proc/net/protocol retrieves information when an application is in active state.

Figure 23: Application life cycle

The header of the proc/net/protocol output has nine fields which define full
information about a particular active application. The important field required from
the proc file execution are: local_address, rem_address, st, UID and Inode. This
data for instance in Figure 22 are converted to decimal format as shown below in
the Figure 24.

After conversion, the data are saved in json format i.e, { ’local_port’: ’46819’, ’lo-
cal_ip’: ’10.249.201.134’, ’protocol’: ’tcp’, ’remote_ip’: ’192.168.43.208’, ’app_name’:
’Policy App’, ’status’: ’LISTEN’, ’remote_port’: ’8000’, ’fqdn’: ’CES App’ }. These
information is later used by the end user to set policies for that particular application.

43

Figure 24: The hexadecimal array converted to decimal

6.1.2 Android Policy App

Android Policy App collects information on intalled Apps as well as the active apps
network information.

As stated in section 2.3.2, Android is a Linux-based mobile operating system.
To gather the network information about active apps on Android smartphones, we
decided to make use of proc file system as done for Linux Policy App. In this Android
Policy App, after executing the proc/net/protocol command, the application name
and signature of the application is found by passing “UID” to the Android Packet
Manager.

As a result we have a UPA mobile application that is available for Android
smartphones. It lists all application information as well as connections types on the
mobile device. The application contains 3 tabs: All Apps, Connection Logs, and
UPI. After launching the app, the first tab displays the list of Installed Apps. As
shown in Figure 25, the tab shows information about applications on the device such
as Application Name, Version, User Id (UID), signature and Package Name.

The second tab on the UPA shows Connection Logs. This tab lists information
about all Internet connected applications on the device using TCP (TCP4 or TCP6)
and UDP (UDP4 and UDP6) connections. The information displayed includes,
Source IP, Source ports, Remote IP, Remote port, App name, the protocol used, and
the state of the connection. Additionally, this tab has a button that allows the user
to send the information of apps to the UPS for setting policies. Figure 26 shows the
output of connection logs tab of the application.

Finally, as shown in Figure 27, the last tab displays the Policy Interface which
accesses web pages in the Policy App to allow the user to directly set his policies.

44

Figure 25: All Apps tab

45

Figure 26: Connection Logs tab

46

Figure 27: Policy Interface incorporated into Policy App

47

6.1.3 Policy Interface

The Policy Interface is a web interface allowing the end user to perform different
policy management operations such as creating new policies, modifying an existing
policy, deleting an existing policy, enabling and disabling policies. This tool provides
a simple web-based interface for end users. The Policy Interface uses generated
active apps information from the Policy App to set policies. It provides each user
the ability to access information about all apps installed on their device as well as
set their policies.

6.2 User Policy Database (UPD)
The UPD stores the information collected by the Policy App and Policy Interface. It
consists of many tables for storing information about user policies. The tables includes,
HOST_APP, USER_CREATED_POLICIES, USER_DELETED_POLICIES,
FAKE_APPS and SERVICE_PROVIDER_APPS.

The HOST_APP table stores information about all Internet connected apps on
the end user devices collected by the Policy App. In a case of Android Policy App
we store only legitimate apps. We define legitimate apps as any application which
signature matches with signatures that are in UPD. It contains 8 tuples of data
including, FQDN of the host, application name, host IP address, application port
number, remote IP address of the app server, remote port of the app server, the
protocol used and the status of the communication.

The USER_CREATED_POLICIES table stores newly created or updated policies
by the user. It contains the same information as the HOST_APP table in addtion
to five other tuples such as, Network Service, Traffic Direction, Action to Perform,
Schedule Start time, and Schedule end time of the policy. The network service
contains a list of protocol names which the user desires to apply for a particular
application. Traffic direction states weather the traffic is incoming(INGRESS) or
outgoing(EGRESS), the field has two selectable values which are INGRESS and
EGRESS traffic. The action to perform field has two selectable values which states
weather the user wants to DROP or ALLOW a packet from a particular application.
The schedule start and schedule end time define the interval time a policy is valid.
This table has also two boolean fields which are new_policy and update_policy which
differentiate between update and creation of the new policy. When policy is created
the value of new_policy is set to false until when the policy has been saved in PMS
then it is changed to true. The update_policy field works similarly as new_policy
field but when the policy is updated.

The USER_DELETED_POLICIES stores user deleted policies. This table has
the same entries as the USER_CREATED_POLICIES table. It has an additional
field that stores the status of the deleted policy. It is a Boolean value showing if the
deleted policy has been deleted in the PMS.

The SERVICE_PROVIDER_APPS table contains information about all known
legitimate apps. The information in this table includes, the signature of the app or
hashCode, name of the app and the version of the app. Newly installed apps on the

48

user’s device are compared to the contents of this table to verify the legitimacy of
the apps. In this thesis, we assume in a case of Android device that this table is
populated with all validated Android Apps by the service provider.

The FAKE_APPS table stores all the applications whose signature key does not
exist in SERVICE_PROVIDER_APPS table and are known to be malicious apps.
This table will tell PMS to not forward any traffic to any application saved in this
table.

The UPD tables ensure that the stored informations are well defined and the
policy in the PMS will not contain any malicious policies or malicious apps. In this
way, the end user device policies can perform as expected.

6.3 User Policy Server (UPS)
The User Policy Server is an HTTP server running on port 10001. The task of the
UPS includes receiving the user apps information from Policy App, validating the
data and performing a database operation i.e. storage. The UPS resides between the
Policy Agent and the UPD where it has a TCP connection with the MySQL server.
When it receives the apps information from the Policy App, it checks whether the
information is in the required format using various functions such as IP validation
check (validity of IP address), Protocol check (Validity port range), and SQL injection
check(the information does not contains any SQL injection attacks).

If the information from Policy App passes the validity check, in case of an Android
device, the signature of the app is checked against the SERVICE_PROVIDER_APPS
table. If the app’s signature matches one in the SERVICE_PROVIDER_APPS
table, the app is stored in HOST_APP table. Otherwise it is stored in FAKE_APPS
table. In this way, the UPS prevents malicious users and apps from infusing malicious
policies in the UPD. In addition, the UPS stores only the information about Internet
connected apps and deletes the information from the UPD if the app is no longer
running on the end user device. But, if the policy is already set by the user, that
policy will be kept in the UPD. In case of Linux device the information are saved in
HOST_APP table.

6.4 Policy Management System (PMS) client
The PMS Client acts as a client to the PMS. It’s task is to request the policy data
from the User Policy Database and forward the information via REST API to the
PMS. The PMS client regularly polls the UPD for changes to policies such as post,
update and delete of policies. In addition, the PMS client also updates the UPD
tables when the storage to PMS is successful.

6.5 Implementation and Usage of Policy Interface
The Policy Interface was implemented using Python-Django, HTML, CSS and
JavaScript. All new users are required to register before they can use the Policy
Interface service. After registration, the user is able to create, update or delete their

49

policies. Because the majority of the users are subscribed to a particular Service
Provider Network (SPN), they are given a unique FQDN by their respective SPN to
authenticate themselves. The Policy Interface has several views for end users such as
Front Page, Network Connection Information, Set Policy and Policy Control.

Front Page: This is the home page of the website where the user can find
instruction how to use the tool such as creating, editing, deleting, enabling and
disabling policies.

Network Connection Information: The Policy App sends information about
apps currently running and this page displays the detailed view of apps information
to the user. The displayed information includes FQDN of the host, Application
name, the IP address of the host, port number of the host, remote IP address of
the app server, remote port of the app server, the protocol used and the status of
the communication. Figure 28 presents the web page that displays all user Internet
connected apps.

Figure 28: User apps informations

Set Policy: This page displays all Internet connected applications from the
HOST_APP table, i.e. only client server application. The application have connec-
tion status which are either Listen or Established. This page enables the user to
create policies for a specific application. As shown in Figure 29, the user can set
policies for an application by clicking on the set policy button in the column for that
application. The set policy page contains fields pre-filled information gathered from
the Policy App. The user must fill the additional input fields such as Network Service,
Traffic Direction, Action To Perform, Schedule Start and Schedule End Time. This
input form filled in by the user constitutes the policy for the application and is then
stored in the USER_CREATED_POLICY table in the UPD.

Policy Control: After the user creates policies, as shown in the Figure 30, this
page has three buttons that allow users to edit, delete, enable, or disable a particular

50

policy.
Edit policy: The user can edit existing policies that he/she created previously

by pressing the edit button.
Delete policy: The user can delete a specific policy that was created by pressing

the delete button. When this button is clicked, the current policy is first saved in
the USER_DELETED_POLICY table then later the delete request is sent by PMS
client to PMS to delete the policies.

Enable and Disable policy buttons respectively allows the user to activate and
deactivate a particular policy.

Figure 29: User set policies page

51

Figure 30: User policies page

6.6 Usage of the PCBS
This section provides tutorial for new users how to use the PCBS. The tutorial is
divided into two categories Linux and Android platforms.

6.6.1 Usage for Android user

1. Download Policy App APK from
"https://gitlab.cloud.mobilesdn.org/CES/policy_tools /tree/master/PolicyAPK"

2. Install APK

3. Start the app by clicking on Policy App icon

4. In Connection Logs tab, send Internet connected apps information to UPS by
clicking Send Data button

5. On Policy Tool tab, the Policy Interface can be used in this tab after authenti-
cation. The usage of the Policy Interface can be found in section 6.5.

6.6.2 Usage for Linux user

This application run on python 2.7.

1. Download Policy App file from
"https://gitlab.cloud.mobilesdn.org/CES/policy_tools/tree/master/client"

2. Run the file using command Python "UbuntuApps.py start"

52

3. Copy-paste "http://100.64.254.25:8000/ces" to the browser

4. the Policy Interface can be used after authentication. The usage of the Policy
Interface can be found in section 6.5.

5. Stop Policy App using command Python "UbuntuApps.py stop"

53

7 Performance testing
This chapter examines the performance of some components of the PCBS described
in Chapter 6. The tested components include the Policy Apps and User Policy Server
(UPS). Since the Policy Interface is developed in Python-Django we did not test it
because the framework in its own has better performance. The main focus is on the
User Policy Server. To measure performance of the UPS, load testing was carried
out to determine how many users it can handle simultaneously and also find the
crash point of the system.

7.1 Test tools
Since UPS at its core is an HTTP server, already mature HTTP load testing
tools can be used to conduct load testing on it. There are several freeware tools
available that can be used to test the performance of HTTP servers. In our case
we choose to measure the performance of the UPS with Apache Jmeter and httperf.
They are both open source server benchmarking tools which are commonly used
to generate workloads to test an HTTP server. Apache JMeter is a pure Java
application designed and developed by the Apache Software foundation. JMeter
allows recreation of different scenarios with a number of simultaneous clients for
various objectives such as identifying the system bottlenecks and resource issues. It is
extensible and with the help of various plugins can be customized to fit different test
scenarios. On the other hand, httperf is a simple command line tool for load testing
and it works with both HTTP/1.0 and HTTP/1.1. This tool provides flexibility to
generate several HTTP workloads. It monitors various performance metrics that are
summarized in the form of statistics that are displayed at the end of a test run.

7.2 Test environment
The test environment comprises of two Linux virtual machines which are Fofana-
VirtualBox and Ibrahima-VirtualBox and two Samsung smartphones Galaxy J5 and
Galaxy S4 mini . The UPS was running from Fofana-VirtualBox and the client
requests were executed on Ibrahima-VirtualBox. The UPS and the client request
both under test make use of 2 cores on their respective machine Fofana-VirtualBox
and Ibrahima-VirtualBox. The linux virtual machine specifications are given in Table
2 and the Android smartphones specification are given in Table 3.

Machine Names Operating System Processors RAM Internet Speed

Fofana-VirtualBox Linux (64-bit) 2 4Gb 739.01 Mbit/s

Ibrahima-VirtualBox Linux (64-bit) 2 4Gb 739.01 Mbit/s

Table 2: Test linux machine specifications

54

Android Phone Android Version Model Number Memory

Galaxy J5 6.0.1 SM-J510FN 16Gb

Samsung S4 mini 4.4.2 GT-I9195 8Gb

Table 3: Test Android smartphones specifications

7.3 Test data
Since end user device may have many applications installed on the device, we assume
that each end user device may run the average of 20 Internet connected applications
when the Policy App runs. Therefore, we choose 20 as test data for the number of
Internet connected apps to measure in our performance test. These test data are
sent to UPS via post request in Json format.

7.4 Performance Test of User Policy Server
The UPS performance was tested using both the httperf and Jmeter. For measuring
the server performance, we split the test into three different test scenarios which are
described in the Figure 31. The test scenarios consist of test1, test2 and test3. In
test1, the UPS receives a request from the client and without processing sends back
a reply. Test2 determines the UPS processing times which includes the processing
delay and User Policy Database(UPD) delays. Test3 measures the overall delay from
Policy App to UPS, including transport delay and processing delay.

Figure 31: User Policy Server (UPS) test scenarios

55

7.4.1 Test1: Average number of replies between concurrent Policy Apps
and UPS without processing

For measuring the UPS’s performance, httperf was used as Policy App to send data to
the UPS which is configured to send back reply without processing the request. The
number of concurrent requests per second was increased till the UPS was saturated
and UPS failure was reached. The term UPS failure means that not all http requests
got a reply from the UPS. The results of test1 are shown in Figure 32 The graph
was generated based on the raw data collected using several experiments for each
data point on the y-axis. Figure 32 depicts the average number of requests sent by

Figure 32: Average reply time versus number of concurrent requests

a client versus the corresponding average number of replies by the UPS. From the
figure it is evident that the UPS can reply to a client request without failure till
up to about 2000 concurrent requests per second. Up to 2000 concurrent requests,
the average number of requests and replies are equal. This implies that the UPS
can handle 2000 simultaneous clients per second when not processing the requests
. As shown in the Figure 33 and the Table 4, the UPS gets saturated if there are
more than 2000 user requests simultaneously per second, e.g. the UPS performance
deteriorates and the number of errors, i.e. unreplied requests, increases.

56

Figure 33: Average reply time versus number of concurrent requests

Concurent requests Average reply time per connection (ms)

10 0.5

50 0.5

100 0.5

1000 0.5

2000 0.5

4000 92

Table 4: Average reply time versus number of concurrent request

7.4.2 Test2: Response time between UPS and UPD

In this scenario, the UPS is configured as the client and UPD is configured as a
MySQL server which stores policies. In this test, a timer was set from the beginning

57

of UPS processing until operations e.g. storage on the UPD finishes. The figure 34
depicts the performance between the UPS and UPD.

Figure 34: Average reply time versus number of concurrent requests

In this test we found out that the UPS starts displaying TCP connection error
when it reaches 100 users simultaneously per second and the fact that in section 7.4.1
the number of simultaneous connections that UPS could handle without processing
was 2000. We can conclude that the bottleneck resides in UPD. Therefore the UPS
was able to create 100 simultaneous connection to the UPD. For that reason the UPS
can handle up to 100 simultaneous users in a second. The limited number of parallel
connections to UPD may be due to weak computational resources of the virtual
machine on which UPD runs (Fofana-VirtualBox). To have more connections between
UPS and UPD, the UPD machine should have higher computational resources.

7.4.3 Test3: Average number of replies between concurrent Policy Apps
and UPS with processing

In this scenario the overall performance between PCBS components such as Policy
App, UPS and UPD was measured. This test was executed for several different
numbers of simultaneous clients to measure how the UPS could handle different loads.
In each measurement a total of 10000 requests was sent to the UPS, using both
httperf and Jmeter and this was repeated 10 times in order to reduce the margin of
error. Figure 35 depicts the average response time versus the number of concurrent
requests. The y-axis shows the average reply time for all experiments and the x-axis

58

describes the number of simultaneous users. At 100 users we can see that the average
response time is between 10-20ms and above that we can see that the response time
increases at a higher rate, as well with the standard deviation shown in Table 5
where we can see a more unsteady test results from 200 users and forth.

Figure 35: Average response time of the UPS with different simultaneous users

Number of users 5 10 25 50 75 100 200 500

Average reply time(ms) 10.2 10.3 10.3 10.5 10.7 20.1 1481 7035

Standard deviation 0.4 0.9 0.9 1.4 2.9 11.5 1097 2729

Table 5: Average reply time and standard deviation for different simultaneous users

Since we want to have a situation as reasonable as possible without getting
misleading results because of an overloaded server, we can conclude from section
7.4.2 and the results shown in this section that the UPS can handle up to 100 users
simultaneously per second. The performance of the server will decrease when this
limit is reached and the server may drop some of the requests in the queue.

59

7.5 Test4: Policy App performance
Here we measure the performance of the Android and Linux application. Since each
of the Policy App fetch only the Internet connected application on the end user
device, therefore, the performance of the application depends on how many running
applications are connected to Internet on the end user device. We measure the time
interval when the program starts running to when it ends. The Android tests were
performed on both smartphones but we consider the test result on the Samsung J5
since it has Android version 6.0.1. The Linux application test was performed on
Fofana-VirtualBox. The tests for the two applications were executed for 1000 times
and the average times were calculated based on the collected information. As shown
in Table 6, the Android application takes the average of 8070 milliseconds to fetch
54 applications and it takes 20 milliseconds to send and get the reply from the UPS.
The Linux application takes the average of 1827 milliseconds for 159 applications
with 12 milliseconds response time from the UPS.

Since the Linux application runs on a more powerful computer and is connected
to the UPS with a wired GbE line in the same LAN, the fetching time as well as the
response time from the UPS is less than that of the Android application.

Type Number of Apps
Collecting Apps

Info (time/duration)

UPS Response

Time (ms)

Linux App 158 1827 12

Android App 54 8070 20

Table 6: UPA performance test

60

7.6 Conclusion and Future works
The principal objectives of this thesis was to develop and test a working system to
bootstrap policy based management system for the end-users, allowing them to set
policies for their devices. This was to ensure that malicious policies will not find their
way to the CES network based policy management system. Furthermore, a utility
tool was developed for Android and Linux device to get full knowledge of all installed
applications running on the device. The collected informations from utility tool are
then are passed to the the User Policy Server for further processing and stored in
User Policy Database which later will help the end-users for future validation of their
policies. The system provides the necessary capabilities that end-users need when
performing policy related tasks.

The applications developed as part of the thesis are designed to be user friendly.
The implementation is tested with varying test scenarios to determine maximum
capacities of various components involved. The testing proves the feasibility of the
system as well as illustrates shortcomings, for example, in terms of read/write times
of the UPD. The scalability of the system depends on the machine that is hosting
the UPD, therefore, with the higher performing device it may scale up.

Policy Creation and Validation System (PCBS) was designed as one of the man-
agement tool for CES because the architecture will protect the PMS against malicious
users as well as the failure of PCBS will not affect the PMS. We proposed this
architecture with an end goal to make the development of future new functionalities
easy. Moreover, the research and methodology followed in this thesis could be again
extended by creating new Policy Apps for some other platforms such as iOS and
Windows to allow PCBS to work with all kind of devices.

In future, the Android application may be redesigned so that it can scan any
malicious applications that the user may install on his device, allowing the device
to uninstall the application when it finds one as well as send the notification to the
MPS about the malware. In this way, the treat to the host may reduce.

The Policy Creation and Validation System implemented in this thesis is intended
for research and educational purposes and can be used as a demo tool for the CES
policy tool. Therefore, it is not a product but rather a prototype.

7.7 Discussion
The validation mechanism of Apps developed in this thesis is rudimentary. It could
be used in practice so that the end users subscribe to a validation service that
is provided e.g. by a Mobile services security company. When the company has
validated a particular Android App, it will store information about the App to the
Service Provider Table in the UPD. This makes it possible for the end user to limit
its Apps to the ones that are known to be non-malicious. Such an approach may be
enough e.g. for company owned phones. For some consumers, however, this approach
may be too restrictive. It is for further study, how it is best to organize the possible
overwriting of this limitation in the policy creation.

61

References
[1] statista. Number of apps available in leading app stores as of march 2017, [online]

april 29, 2017, available at: https://www.statista.com/statistics/276623/number-
of-apps-available-in-leading-app-stores/.

[2] VantagePoint. Dyn analysis summary of friday october 21 attack [online]
september 29, 2017, available at : https://dyn.com/blog/dyn-analysis-summary-
of-friday-october-21-attack/.

[3] G Davis. Are connected homes mirai’s new best friend? |
mcafee blogs. mcafee blogs. may 26, 2017, available at:
https://securingtomorrow.mcafee.com/consumer/consumer-threat-
notices/connected-homes-mirais-new-best-friend/.

[4] G Davis. Threats report, september 29, 2017, available at
: https://www.mcafee.com/us/resources/misc/infographic-threats-report-mar-
2017.pdf.

[5] G Davis. Cyber security spending 2017, september 29, 2017, available at :
https://businessinsights.bitdefender.com/cyber-security-spending-2017.

[6] H. Kabir R. Kantola and P. Loiseau. Cooperation and end -to- end in the
Internet. Department of Communication and Networking, Aalto University,
2015.

[7] R. Kantola. Customer Edge Switching – A Trust-to-Trust Architecture for the
Internet. Department of Communication and Networking, Helsinki University
of Technology, 2009.

[8] L. Khelladi D. Djenouri and N. Badach. A survey of security issues in mobile
ad hoc networks, 2005.

[9] W. Stallings and L. Brown. Computer security. principles and practice, 2008.

[10] Wikipedia. Operating system, available at:
https://en.wikipedia.org/wiki/operatingsystem.

[11] W. Mauerer. Linux kernel architecture, wiley publishing, inc.

[12] A. Zeinab. Linux platform functions for embedded target platform. Master’s
Thesis, Tampere University of Technology, 2015.

[13] N. A. Malik A. A. Sheikh, P. T. Ganai and K. A. Dar. Smartphone: Android
os vs ios, 2013.

[14] P. Peris-Lopez G. Suarez-Tangil, J. E. Tapiador and A. Ribagorda. Evolution,
detection and analysis of malware for smart devices, 2014.

[15] S. Yash R. S. Pranav and M. Saurabh. Mobile viruses, 2011.

62

[16] D. K. Tushar and T. K. Minal. Denial of service attack techniques: Analysis,
implementation and comparison, 2004.

[17] R. Edwards J. Jamaluddin, N. Zotou and P. Coulton. Mobile phone vulnerabili-
ties: a new generation of malware, 2004.

[18] E. Kirda M. Egele, C. Kruegel and G.Vigna. Pios: Detecting privacy leaks in
ios applications, 2011.

[19] N. Kumar K. Ahmad, S. Verma and J. Shekhar. Classification of internet
security attacks, 2011.

[20] S. Pillai S. Gadgil and S. Poojary. Sql injection attacks and prevention techniques,
2014.

[21] S. Guo Z. Chen, R. Duan, and S. Wang. Security analysis on mutual authenti-
cation against man-in-the-middle attack, 2009.

[22] S. Taluja and R. Lal Dua. Survey on network security, threats and firewalls,
2012.

[23] H. Kozushko. Intrusion detection: Host-based and network-based intrusion
detection systems, 2003.

[24] J. Schnizlein A. Westerinen and et al. Terminology for policy-based management
– rfc 3198, 2001.

[25] J. Viega and G. R. McGraw. Building secure software: How to avoid security
problems the right way, 2001.

[26] A. CHIDAMBARAM. Implementation and validation of network policy services.
Computer Networking, North Carolina State University, 2002.

[27] TechoPedia. Network Security Policy available at:
https://www.techopedia.com/definition/29916/network-security-policy.

[28] K. Zeilenga. Lightweight directory access protocol (ldap): Technical specification
road map, 2006.

[29] L. A. Lymberopoulos. An Adaptive Policy Based Framework for Network
Management. Department of Computing, University of London, 2004.

[30] B. A. Forouzan. Tcp/ip protocol suite, mcgraw-hill, 2002.

[31] F. Audet and C. Jennings. Network address translation (nat) behavioral
requirements for unicast udp, rfc 4787, 2007.

[32] R. van der Meulen. Gartner says 6.4 billion connected things
will be in use in 2016 up 30 percent from, 2015, [online] available:
http://www.gartner.com/newsroom/id/3165317.

63

[33] University of Southern California Information Sciences Institute. Transmission
control protocol, rfc 793, 1981.

[34] G. Tsirtsis and P. Srisuresh. Network address translation-protocol translation
(nat-pt) , rfc 2766, 2000.

[35] P. Matthews J. Rosenberg, R. Mahy and D. Wing. Session traversal utilities for
nat (stun) , rfc 5389, 2008.

[36] R. Mahy J. Rosenberg and P. Matthews. Traversal using relays around nat
(turn) , rfc 5766, 2010.

[37] J. S. Llorente. Private Realm Gateway, Master Thesis. Department of
Communication and Networking, Alto University, 2012.

[38] M. Pahlevan. Signaling and Policy Enforcement for Co-operative Firewalls,
Master Thesis. Department of Communication and Networking, Alto University,
2013.

[39] Kantola R. Cetp, 2015, available at: http://www.re2ee.org/cetp-protocol-v08-
2.pdf.

[40] J. L. Santos R, Kantola and N. Beijar. Policy Based Communications for 5G
Mobile with Customer Edge Switching. Department of Communication and
Networking, Alto University, 2013.

	Abstract
	Acknowledgements
	Contents
	List of Acronyms
	Introduction
	Research Problem
	Objectives
	Scope
	Structure
	Contribution

	Basics of Computer Security
	Device security
	 Principle of security
	Confidentiality
	Integrity
	Availability
	Authenticity
	Non-repudiation
	Access Control

	Principle of security
	Linux architecture
	Android architecture

	End system vulnerabilities and threats
	OS vulnerabilities
	Hardware vulnerabilities
	Application/ Software vulnerabilities

	Attack types
	Prevention mechanisms

	State of the art in policy management
	What is a policy?
	Policy classification
	Policy properties
	Policy-Based Model
	IETF policy-based management architecture

	TCP/ IP model
	Network and Protocol
	Internet protocol
	 Internet Protocol version 4 (IPv4)
	 Internet Protocol version 6 (IPv6)

	Transport protocols
	Transmission Control Protocol (TCP)
	User Datagram Protocol (UDP)

	Domain Name System (DNS)
	Domain Name Space
	Name Server
	Resolver

	Network Address Translation (NAT)
	How NAT works
	Problem with NAT

	Customer Edge Switching
	Motivation
	Architecture
	Communication in CES
	Inter-CES communication
	Intra-CES communication
	Packet forwarding in PRGW

	Customer Edge Traversal Protocol (CETP)
	Conclusion and research questions

	Implementation and Evaluation
	User Policy Agent (UPA)
	Linux Policy App
	Android Policy App
	Policy Interface

	User Policy Database (UPD)
	User Policy Server (UPS)
	Policy Management System (PMS) client
	Implementation and Usage of Policy Interface
	Usage of the PCBS
	Usage for Android user
	Usage for Linux user

	Performance testing
	Test tools
	Test environment
	Test data
	Performance Test of User Policy Server
	Test1: Average number of replies between concurrent Policy Apps and UPS without processing
	Test2: Response time between UPS and UPD
	Test3: Average number of replies between concurrent Policy Apps and UPS with processing

	Test4: Policy App performance
	Conclusion and Future works
	Discussion

