
AALTO UNIVERSITY

School of Electrical Engineering
Department of Communications and Networking

Maryam Pahlevan

Signaling and Policy Enforcement for Co-operative
Firewalls

Master's Thesis submitted in partial fulfillment of the degree of Master of Science in
Technology

Espoo, 26th February 2013

Supervisor: Prof. Raimo Kantola, Aalto University

 i

AALTO UNIVERSITY ABSTRACT OF THE MASTER’S THESIS

Author: Maryam Pahlevan

Name of the Thesis: Signaling and Policy Enforcement for Co-operative Firewalls

Date: 26th February 2013 Number of pages:X+119

Department: Department of Communications and Networking

Professorship: S-38

Supervisor: Prof. Raimo Kantola, Aalto University

Instructor: D. Sc. (Tech.) Nicklas Beijar, Aalto University

The Internet environment has been changing dramatically during the recent years. Plenty of
new requirements and problems such as the IPv4 address shortage, traversing middle boxes
and mobility that cannot be solved with the current Internet architecture have emerged.
Among those problems, the IPv4 address exhaustion is recognized as one of the key
challenges in the original Internet design. The reason is the unprecedented growth in the
number of user devices and regular network nodes which are addressed with IPv4 locators.

Several solutions including Network Address Translator (NAT) and IPv6 (a new version of
IP) have been proposed to alleviate the scalability problem. NAT postpones the depletion of
the IP address space by reusing the IPv4 address space and isolating customer networks from
the public network; it makes hosts in the private address space unreachable from the public
Internet. To be exact, a NAT, like a strict firewall, filters out all inbound data flows while
outbound traffic from private hosts can go through it. The proposed NAT traversal techniques
by IETF have many disadvantages.

The Customer Edge Switching aims to replace NAT with a new device called co-operative
firewall and eliminate the problems of existing NAT traversal solutions. A CES device
provides global connectivity over the Internet using different types of identifiers, global
unique domain names and private addresses.

In this thesis, Customer Edge Traversal Protocol (CETP) is introduced as an edge-to-edge
protocol and prototyped so as to tunnel data and control information while transporting the
source and destination IDs from one customer network to another. This work also includes the
policy management of co-operative firewalls. The testing results assure the suitability of
CETP for inter-CES communication and edge-to-edge signaling.
Keywords: CES, NAT, NAT traversal, CETP, tunneling, Address exhaustion, Firewall

Language: English

 ii

Acknowledgments
I would like to thank my supervisor, Professor Raimo Kantola, for his valuable advice and
helpful comments throughout my thesis work. His broad knowledge on my research work
gives me opportunity to explore different aspects of computer networks.

I also appreciate my instructor, Nicklas Beijar. I found him a wonderful person, and I can't
express how much I've taken away from working with him.

I want to extend an additional thanks to my friends for their support and encouragement.
They helped me to have a balance in my life and kept me happy while doing my thesis.

I am extremely grateful to my siblings. Their successful education backgrounds always
inspire me to pursue my education diligently.

Finally, I would like to thank my parents for their love, endless support and encouragement
during my Master degree. They always keep me motivated for achieving my goals
especially in terms of education.

Maryam Pahlevan

26th February 2013

 iii

Table of Contents
LIST OF ACYRYNOMS .. vii
LIST OF FIGURES .. ix

LIST OF TABLES .. xi
1. Introduction ... 1

1.1. Research Problem ... 2
1.2. Objectives ... 2
1.3. Scope .. 3
1.4. Structure .. 3

2. The Basics of Network Security .. 5

2.1. Network Security ... 5
2.1.1. Network Security Architecture .. 5
2.1.2. The Basic Components of Network Security ... 6
2.1.3. Identification, Authentication and Authorization .. 7
2.1.4. Trust in Networks ... 8
2.1.5. Security Vulnerabilities and Threats .. 8

2.2. Network-based Attacks .. 9
2.2.1. SYN Flooding .. 9
2.2.2. Smurfing... 10
2.2.3. Eavesdropping .. 10
2.2.4. Data Modification .. 10
2.2.5. Distributed Denial-of-Service Attack .. 11
2.2.6. Spamming .. 12
2.2.7. IP Spoofing (Identity Spoofing) ... 12
2.2.8. Man in the Middle Attack .. 14

2.3. Firewalls .. 14
2.4. Cookie .. 15
2.5. Cryptography .. 16

2.5.1. Symmetric Cipher .. 17
2.5.2. Asymmetric Cipher .. 17
2.5.3. The RSA Encryption Algorithm .. 18
2.5.4. Certificate Authority .. 19
2.5.5. One-way Hash Function ... 19
2.5.6. Signature .. 20
2.6. Return Routability Check .. 20

3. Some Basics of the Internet ... 21

3.1. NAT .. 21
3.2. Basic NAT .. 22
3.3. NAPT .. 22
3.4. NAT Address Assignment Behavior .. 22
3.5. NAT Traversal Issues ... 23
3.6. NAT Traversal Techniques .. 24

3.6.1. Session Traversal Utilities for NAT .. 24

 iv

3.6.2. Traversal Using Relay NAT .. 25
3.6.3. Interactive Connection Establishment ... 27
3.6.4. ALG .. 28

3.7. DNS Overview .. 28
3.7.1. The Domain Name Space .. 28
3.7.2. Resource Records ... 29
3.7.3. Resolvers .. 30
3.7.4. DNS Message Structure ... 30
3.7.5. Name-to-Address Resolution ... 31
3.7.6. Address-to-Name Resolution ... 32

3.8. Fragmentation and Reassembly ... 33
3.8.1. Incoming Fragmented Packets at NAT Device.. 34

4. Customer Edge Switching ... 36

4.1. Objectives ... 36
4.2. Requirements .. 36
4.3. Customer Edge Switching Overview ... 37
4.4. CES Architecture ... 38
4.5. Message Flow Across Trust Domains .. 39

5. Customer Edge Traversal Protocol .. 43

5.1. CETP Objectives .. 43
5.2. Requirements .. 45
5.3. CETP Packet Structure ... 46
5.4. Protocol Compulsory Control Header .. 46

5.4.1. Identity Encoding ... 47
5.4.2. Control TLV Format .. 47

5.5. CETP Control Signaling .. 50
5.5.1. RLOC TLV .. 50
5.5.2. Timeout of the Customer Edge State ... 51
5.5.3. Cookie TLV ... 52
5.5.4. New ID Type Query and CA Address TLV .. 52
5.5.5. Domain Information ... 53
5.5.6. Signing CETP Header .. 54
5.5.7. Reporting Unexpected Messages ... 54
5.5.8. Backoff TLV .. 55

5.6. Reporting Unwanted Traffic and Malware .. 55
5.7. Payload in CETP .. 55

5.7.1. Header Compression for IPv4 Payload .. 56
5.7.2. Ethernet Encapsulation for any Payload Protocol .. 56

5.8. Security Mechanisms Implemeneted with CETP .. 57
5.8.1. Return Routability Checks ... 57
5.8.2. State Management .. 59
5.8.3. ID Management .. 59
5.8.4. Signature .. 60
5.8.5. Reporting Attacks .. 60
5.8.6. Policy Control of CETP ... 61

 v

6. Principles of CETP Policy Processing .. 63

6.1. Policy Control of CETP ... 63
6.2. Policy Class .. 64
6.3. FSM Class .. 65
6.4. Policy Engine Class .. 66
6.5. Auxiliary Methods in Policy Engine Class .. 67

6.5.1. Policy Engine Algorithm for Creating Full Requirements 68
6.5.2. Policy Engine Algorithm for Processing Control Information 69
6.5.3. Policy Engine Algorithm for Signature Verification ... 71
6.5.4. Policy Engine Algorithm for Replying to Control Information 71
6.5.5. Policy Engine Algorithm for Cookie Generation .. 73
6.5.6. Policy Engine Algorithm for Cookie Verification ... 74
6.5.7. Policy Engine Algorithm for Checking ID Requirement....................................... 74

6.6. Policy Engine Algorithm for Creating oFSM .. 75
6.7. Policy Engine Algorithm for Creating iFSM ... 76
6.8. Policy Engine Algorithm for Processing Pending State .. 78
6.9. Policy Engine Algorithm for Processing Ongoing State .. 79

7. Implementation and Evaluation ... 81

7.1. Test Network and Components .. 81
7.2. The Scope of Implemented Prototype .. 81
7.3. Experimental Setup .. 82
7.4. Network Elements .. 84
7.5. External Libraries ... 84

7.5.1. Scapy .. 85
7.5.2. DNS Python ... 85
7.5.3. Python Cryptography ... 85

7.6. Prototype Software Structure ... 85
7.7. CETP Class Implementation .. 86
7.8. Testing Scenario ... 86
7.9. Example Run of Inbound Policy Without any Requirements 87
7.10. Example Run of Inbound Policy With A Specific ID Requirement 89
7.11. Some Example of Unsuccessful Connection Establishments 92

7.11.1. Example Run of Unsupported ID Requirement ... 92
7.11.2. Example Run of Unsuccessful Return Routability check 92
7.11.3 Example Run of Unsupported Receiver Requirement .. 93
7.11.4 Example Run in Disruptive Network .. 95

7.12. Problems Throughout the Research Work .. 96
7.13. Evaluation of Results .. 97
7.14. Discussion ... 97

8. Conclusion .. 100

References... 102

Appendices ... 106

Appendix A ... 106

Appendix B ... 107

 vi

Appendix C ... 108

Appendix D ... 110

Appendix E ... 112

Testing Scenario Number 1: .. 112
Testing Scenario Number 2: .. 113
Testing Scenario Number 3: .. 113
Testing Scenario Number 4: .. 114
Testing Scenario Number 5: .. 115
Testing Scenario Number 6: .. 115
Testing Scenario Number 7: .. 116
Testing Scenario Number 8: .. 117
Testing Scenario Number 9: .. 118
Testing Scenario Number 10: .. 118

 vii

LIST OF ACYRYNOMS

ACL Access Control List

ALG Application Level Gateway

BEC Best Effort Communications

CA Certificate Authority

CES Customer Edge Switch

CETP Customer Edge Traversal Protocol

CSM Connection State Machine

CuN Customer Network

DDoS Distributed Denial-of-Service

DNS Domain Name System

DoS Denial-of-service

DS Directory Service

FSM Finite State Machine

FTP File Transfer Protocol

FQDN Fully Qualified Domain Name

GTO Global Trust Operator

HRL Host Register List

ICMP Internet Control Management Protocol

ID Identity

IM Instant Messaging

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ISP Internet Service provider

ITF Internet Trust Framework

LAN Local Area Network

MD Message Digest

MITM Man In The Middle

MOC Mobile Operator Certificate

MTU Maximum Transmission Unit

 viii

NAT Network Address Translator

NAPT Network Address / Port Translator

NAPTR Naming Authority Pointer
PAC Packet Access Control

PN private node

PRGW Private Realm Gateway

RLOC Routing Locator

RPF Reverse Path Forwarding

RR Resource Record
RRP Return Routability Procedure

RTT Round-trip time

SCTP Stream Control Transmission Protocol

SIP Session Initiation Protocol

SPN Service Provider Network

STUN Session Traversal Utilities for NAT

TTL Time to Live
TURN Traversal Using Relay NAT

UNSAF Unilateral Self Address Fixing architecture

URI Uniform Resource Identifier

 ix

LIST OF FIGURES

Figure 2.1: Network security architecture and dimensions .. 6
Figure 2.2: Distribute denial of service attack.. 11
Figure 2.3: IP spoofing ... 12
Figure 2.4: Data encryption terminology.. 16
Figure 3.1: Message flow in STUN ... 25
Figure 3.2: Basic message flow in TRUN ... 26
Figure 3.3: The message structure of resource record ... 29
Figure 3.4: DNS message format .. 30
Figure 3.5: A recursive name resolution ... 32
Figure 4.1: CES concept ... 39
Figure 4.2: The message flow in Customer Edge Switching architecture. 41
Figure 5.1: CETP packet structure ... 46
Figure 5.2: Protocol header .. 46
Figure 5.3: Control TLV format .. 48
Figure 5.4: Length encoding for TLVs and IDs .. 50
Figure 5.5: RLOC TLV format .. 50
Figure 5.6: Timeout TLV structure ... 52
Figure 5.7: Cookie TLV formatting ... 52
Figure 5.8: Example of reverse DNS query .. 53
Figure 5.9: Unexpected message report TLV .. 54
Figure 5.10: IPv4 header compression format ... 56
Figure 5.11: Ethernet encapsulation structure ... 56
Figure 5.12: Example of return routability check on naming level .. 58
Figure 5.13: Example of forwarding level returrn routability check 58
Figure 5.14: Changing ID type example ... 60
Figure 5.15: Example of successful flow with the lax and the strict admission policy 62
Figure 6.1: Policy engine Algorithms ... 66
Figure 6.2: Finite state machine of policy engine ... 66
Figure 6.3: Creating full requirement algorithm .. 68
Figure 6.4: Policy engine algorithm for processing of CETP control information 69
Figure 6.5: Policy engine algorithm for TOUT processing .. 70
Figure 6.6: Policy engine algorithm for domain information processing 70
Figure 6.7: Policy engine algorithm for signature processing ... 71
Figure 6.8: Policy engine algorithm for replying to control information 72
Figure 6.9: Cookie generation algorithm.. 73
Figure 6.10: Check ID requirement algorithm ... 75
Figure 6.11: Policy engine algorithm for creating oFSM... 75
Figure 6.12: Policy engine algorithm for processing flow arrivals 76
Figure 6.13: Policy engine algorithm for processing pending state 78
Figure 6.14: Policy engine algorithm for processing ongoing state 79
Figure 7.1: The prototype network .. 83
Figure 7.2: The class diagram of CES prototype .. 85
Figure 7.3: Example of successful connection setup for a destination without any
requirements .. 88

 x

Figure 7.4: Example of successful connection setup for a destination with MOC ID
requirement .. 90
Figure 7.5: Example of unsuccessful connection establishment due to unsupported ID
requirement .. 92
Figure 7.6: Example of unsuccessful connection setup due to unsuccessful return
routability check .. 93
Figure 7.7: Example of unsuccessful connection establishment due to unsupported receiver
requirements .. 94

 xi

 LIST OF TABLES

TABLE 5.1: DIFFERENT CONTROL TLV GROUPS .. 48
TABLE 5.2 POSSIBLE OPERATIONS FOR CONTROL TLVS ... 49
TABLE 5.3 LIST OF COMBINATION OF COMPATIBILITY BITS 49
TABLE 5.4 TRUST MECHANISMS OF CETP ... 57
TABLE 6.1 DIFFERENT TYPES OF OF INTERACTIONS ... 63
TABLE 6.2 LIST OF FSM TIMEOUTS AND THEIR DESCRIPTION 65

 1

1 Introduction

As a result of the large scale deployment and success of the Internet over the last decades,
the original Internet architecture has been stretched to the limit. In the future Internet
architecture and protocols, several new problems and requirements that cannot be solved
by the current Internet must be taken into account. The Internet Protocol version 4 (IPv4)
address space exhaustion, traversing middle boxes such as Network Address Translators
(NATs) and firewalls, unwanted traffic, mobility and multi-homing are some of such
problems.

Since IPv4 addresses are required to address user devices and intermediate network
elements in the global Internet, IPv4 address extinction is seen as one of the most
important problems in the current Internet. There have been many proposals and solutions
to alleviate scalability problems that exist in the original Internet design. Among all these
proposals, NAT and Internet Protocol version 6 (IPv6) are gaining more attention and are
deployed widely in practice. A NAT extends the IPv4 addressing lifetime by hiding local
routing information of the customer networks from the core network and reusing IPv4
addresses, but makes it difficult to initiate communication with the hosts in the private
network from the public network.

To solve the NAT traversal problem, IETF has proposed Unilateral Self Address Fixing
architecture (UNSAF) [5] that operates by the help of costly adds-on servers, modifying
user devices, cluttering application code with application specific NAT traversal code and
adding keep-alive signaling. The keep-alive mechanisms and unsolicited traffic consume
network resources rather fast and particularly for battery powered mobile devices cause
additional drain to the batteries.

The Customer Edge Switching [23] has been proposed to replace NAT with a device called
Customer Edge Switch (CES). A CES device resides at the edge of the customer network
and provides extensions to the functionalities of a NAT. The main difference is that CES
unlike NAT makes hosts and servers in the private networks globally reachable without
using keep-alive signaling or even non-scalable and costly servers. In addition, CES in a
similar way to firewalls can make a decision whether the incoming/outgoing packet is
legitimate or not. Conceptually, a CES is a cooperative firewall, it allows the sender’s
network and the receiver’s network to cooperate to counter the actions of the hosts that
have been infected by viruses and Trojans and that may be joined in a botnet. A co-
operative Firewall extends the options for decisions that the firewall can make from

 2

admit/deny to admit/deny/query. Due to this, a CES helps to reduce unwanted traffic that
reaches the destination host.

1.1 Research Problem

This master thesis is aimed at verifying and refining the specification of the Customer
Edge Traversal Protocol through prototype implementation and testing. The starting point
of the work was an outline protocol definition created by professor Kantola on a set of
slides.

The CETP is an edge-to-edge tunneling protocol. The purpose of CETP is to tunnel data
packets and control information while carrying chosen types of identities from one
customer network to another. The protocol operates between two communicating CES
devices which require desired types of identities, globally unique domain names and
private addresses to provide global connectivity over the public Internet. The CETP gives
the private network various tools like return routability check on naming or forwarding
level to make an informed admission decision on incoming/outgoing packets and
consequently enhances trust between two customer networks and two endpoints and
reduces unwanted traffic that reaches a destination host.

CETP makes the inbound CES responsible for detecting and eliminating source address
spoofing thus making it reasonable for the inbound node also to collect evidence of
misbehavior of the sender and attribute the evidence to the sending host and at least to the
customer network that serves the sender. Furthermore, we believe that CETP with the help
of its on-demand routing capability can be used as a means to traverse multi-homed
network boundaries. CETP can be modeled to run on top of UDP, over IP as a new
protocol or over Ethernet by defining a new Ether-type for CETP.

All aspects of the CETP protocol are policy controlled. In this thesis, a significant effort is
presented for policy control implementation and testing in connection with the CETP
protocol.

1.2 Objectives

The purpose of this research work is to achieve a stable specification of CETP and further
prototype the protocol as an essential component of our new co-operative firewall
architecture. In addition, we implemented a policy enforcement module to enforce rules in
co-operative firewalls. More specifically, the policy control of CETP is developed to
evaluate the possibility of the idea of co-operative firewalls. This research is carried out in

 3

a way that it can easily interoperate with the previous Master’s theses that have prototyped
the Customer Edge Switching concept, Private Realm Gateway (PRGW)[29] and Session
Initiation Protocol (SIP) and File Transfer Protocol (FTP) Application Level Gateways
(ALGs) [28].

To assure the correctness of the developed CETP packet structure and the logic of the
policy processing algorithms, we tested the prototype with a significant number of testing
scenarios. The key idea behind this extensive testing was to check the suitability of the
CETP solution for the inter-CES communication while tunneling data packets and control
information over the core network and transferring a variety of identities. The functionality
of the program was also examined with well-known protocols such as SSH, SFTP and
HTTP.

It is important to note that the developed prototype was not evaluated in terms of
performance. Instead, we verified the logic of the implemented algorithms thoroughly. In
addition, this work is completely transparent to end hosts.

1.3 Scope

This thesis presents a structure of the CETP message that emerged due to the work on this
thesis. Additionally, it contains the policy control algorithms which are used for edge-to-
edge signaling. However, the policy processing could be carried out in several ways; we
only focused on a single model and developed that throughout this work.

The CETP implementation is integrated into the former CES prototype that has been
developed as a proof of the CES concept. Therefore, the prototype only contains simplified
Customer Edge Switching functionalities. We did not modify the core functions unless it
was required in the CETP development process.

Since the purpose of this work was a rough prototyping of CETP and its relevant methods
with Python, we did not conduct any performance testing. Moreover, the prototype was not
tested with the mobile end hosts and multi-homed networks.

1.4 Structure

This thesis work is described in eight chapters. The basics of the network security are
discussed in Chapter 2. Besides, some of the network attacks and corresponding counter
measurements are explained in the subsections. Chapter 3 briefly explains some basic
concepts of the Internet such as DNS, NAT and fragmentation. This chapter examines the

 4

NAT concept in more depth and lists the issues that have emerged as a result of using
NATs at the edge of the private networks. A Customer Edge Switching solution which has
been proposed to obviate the NAT reachability problem is described in the fourth chapter.
Understanding this chapter is essential to follow the next chapters. In the fifth chapter, the
key ideas of developing CETP as an edge-to-edge tunneling protocol are presented in
details. The packet structure of the CETP and the story behind each field in the CETP
message are also discussed in this chapter. The sixth chapter is devoted to describing how
the experimental environment is set up and how the networking elements involved in the
prototype network are configured. Additionally, the algorithms enabling the policy
processing for the CETP protocol are explained extensively in Chapter 6. Chapter 7 goes
through some special cases of the testing scenarios and then evaluates the results that were
obtained from the entire test cases. The final chapter provides the conclusion of the thesis.

 5

2 The Basics of Network Security

This chapter discusses the different aspects of the network security and why it has become
more and more important in recent years. The most contemporary network vulnerabilities
and attacks will be listed and explained briefly. The end of this chapter is focused on
cryptographic mechanisms and tools that are extensively used in Internet protocols as
strong counter measurements to fraud and unauthorized activities.

2.1 Network Security

Over the recent decades, the Internet has evolved significantly and the number of the users
who use the Internet for fulfilling their needs has increased exponentially. At the same time
more attention is turned to malicious actions and unlawful access to the network’s and the
user’s resources. The network attacks are usually targeted to capture or manipulate
personal data or acquire control of the victim’s system. By granting authority to tools with
the malicious codes hidden inside them, insecure administration systems, vulnerable
security systems, buggy operating systems and installed software provides numerous
opportunities for attackers to initiate illegal activities. The malware like worms, viruses
and Trojan horses, spam circulating, social engineering techniques such as phishing,
identity theft and stealing personal and critical information are some of the dangerous
network security threats.

There are several ways to infect a computer system by malicious codes. For instance,
transferring malware from the Internet to the victim’s system can happen by downloading
a file, clicking on a link that redirects to a fake website or by opening spyware carried in a
received email. Additionally, some browsers download malicious codes while surfing an
infected website. In this scenario, the user does not do anything to trigger downloading
malware from the visited website. [33]

2.1.1 Network Security Architecture

The security framework can be described using layers and planes. The purpose of the
security layers is to provide security for the network infrastructure and facilities. Due to the
layering design in the security layers, the end-to-end security between different
applications can be built regardless of the type of the communicating applications. To
achieve end-to-end security, security is split into infrastructure layer, services layer and
application layer. Since there are various vulnerabilities on each network layer, each of the
security layers strives to fulfill security requirements of the specific layer. For instance, the

 6

Infrastructure layer tries to provide security across network elements such as servers,
routers and physical links. The service layer takes care of the security of the services that
are given to the Internet users by the Internet Service providers (ISP). In contrast, the
application layer is associated with applications that function over the network.

The security planes protect a range of actions that are done over the Internet. The
Management plane, the Control plane, and the End-User plane are three security planes
which are aimed to meet security requirements of the activities like management activities.
The management plane addresses the security of Administration, Maintenance and
Provisioning activities. On the other hand, the control plane is responsible for providing
the security of the signaling activities including setting up a connection between two
communicating endpoints independent of the transmission facilities and network links. The
end-user plane concerns the security of data and actions that reside or take place at end
systems. The big picture of the network security architecture is shown in Figure 2.1. [50]

 Figure 2.1: Network security architecture and dimensions [revised] (Zhao et al. 2003)

2.1.2 The Basic Components of Network Security

A closer look on Internet security shows that the basic idea behind the security concept is
to preserve privacy. Privacy is about controlling the level of the visibility and accessibility
of the personal information by its owner. In other words, privacy means that user’s identity
and his/her actions must be protected. [50]

Data security has four different dimensions: Data Confidentiality, Integrity, Availability
and Non-repudiation. To provide data confidentiality, unauthorized access to data has to
be hindered through encryption mechanisms, access control lists, and file permissions.

 7

Also, an unauthorized party should not be able to generate, modify, remove, or replicate
data. This feature is named data integrity. Data integrity cannot be guaranteed without
knowing and verifying the sender of data. [10]

The availability dimension defines the ability to provide uninterrupted access to network
resources, services and information storage for the right person. [44]

Non-repudiation is another aspect of the data security. It does not permit users to deny their
activities that they did on the data including sending or receiving packets, making or
receiving audio or video calls. There are two forms of non-repudiation ability that can be
provided by the network. Non-repudiation with the proof of origin of data hampers any
attempts by the sender to deny having sent messages. On the other hand, the recipient is
unable to deny receiving the data through proof of delivery of data. [50]

2.1.3 Identification, Authentication and Authorization

In order to preserve confidentiality, integrity and availability of computing resources,
firstly the user has to identify itself to the destination system, then the system that serves
the customers’ needs to verify the identity of the sender and eventually the system
administrator should grant a specific access right of resources to the user. These three
functions are named identification, authentication and authorization respectively.

The identification procedures often do not provide any certificate that can be used to assure
the identity of users. The prevalent identification mechanism usually uses a username that
consists of a mixture of the letters, numbers and other character's to identify the end system
or user.

Authentication comes after the identification function as the next step. There are various
authentication mechanisms in which the user is required to validate its identity. To prove
user’s identity, the user must provide certain entities to the destination system. These
elements can be passwords, fingerprints or access cards.

Once the identification and authentication process in a destination system is in place, the
system administrator must decide what level of access rights to assign to the user. This
procedure of granting rights to the end system is called authorization. [10]

 8

2.1.4 Trust in Networks

Trust is a concept involving different dimensions and disciplines. There is a mutual
relationship between the essence of network security and absence of trust. Specifically, if
trust is not provided across the networks, the Internet could not be used extensively for e-
commerce and other serious services that need secure and trustworthy communication.
However, the trust concept can be defined in different ways, in this thesis our focus is on
the definition of trust that refers to it as a property of a relationship. This relationship
consists of two parties. The first party is the trustor who relies on the legitimacy and
rightfulness of the second party called trustee. When the trustor chooses to trust the trustee,
it accepts a risk.

The purpose of trust modeling is to simplify connection establishment where the
environment is hostile and also communicating end points have contrary aims. This can be
achieved by minimizing risk in those situations.

In an act of communication between a sender and a receiver, the receiver is the trustor,
while the sender is the trustee. The receiver’s risk is realized when the received content
turns out to be unwanted.

In the computer science, trust is treated as a logical concept. Consequently it is gained by
examining many conditions and applying the respective propositional logic. It can be seen
in the form of stateless packet filtering. This filtering function can be enhanced
significantly by considering the previous activities of the source entity. It is worthy to
mention that security risks cannot be always removed completely, therefore setting up
connections must be allowed even in the existence of risks.

Authentication is being used as a strong tool to improve trust in the global network. As
authentication is costly, a public network administrator can justify the expenses required
for the essential authentication infrastructure only with the value-added services and usage
based billing. [49]

2.1.5 Security Vulnerabilities and Threats

When a system is designed, implemented and used, a number of bugs and weak points
appear in the system. An attacker can take advantage of the system’s security
vulnerabilities and break into the system. The security vulnerability concept differs from a
security threat, risk and even network-based attack.

 9

Any activity that tries to violate the confidentiality, integrity, or availability of resources is
known as a security threat. A security threat can be active or passive. In an active threat
like masquerading and denial of service, the attackers change the state of the system while
making unauthorized access to the system’s resources. In contrast, a passive threat
including eavesdropping takes place without any changes in the system’s state. [50]

The threats can be split into four categories: disclosure, deception, disruption and
usurpation. A disclosure threat happens when an attacker accesses the resources without
adequate privileges. Deception means that the system receives wrong information instead
of valid data. In the disruption threat, malicious users prevent the system to function
regularly. The usurpation is about supervising a destination system partially or completely.
[9]

Vulnerabilities and threats in a separate context cannot make any security risk, whereas
when a threat combines with security vulnerability, the security of the system encounters a
risk. The following equation usually is exploited to explain a security risk. [10]

Risk = Threat × Vulnerability

For example, let us assume a web server attack as a risk. To evaluate this security risk, an
overflow flaw in the desired application as a vulnerability is combined with the devastating
activities such as an unauthorized access, using sophisticated tools and suitable knowledge
about the system. The packet loss, data manipulation and loss of reputation are some of the
security risk’s results. [50]

2.2 Network-based Attacks

The action that causes a potential violation of the security to happen is called an attack.
Lack of appropriate authentication and encryption mechanisms in the TCP/IP protocol
stacks provides the basis for a wide range of attacks. Some of the potential attacks are
described in the following subsections.

2.2.1 SYN Flooding

The three-way handshake that is used to set up a TCP session, gives a significant number
of opportunities to attackers. For a TCP connection establishment, first an initiator sends a
SYNchronize packet to the destination host and then the responder replies with the SYN-
ACK message. The TCP session is established once the sender returns the ACK packet.
The SYN flood that exploits this TCP’s weakness to perform an attack can be considered

 10

as an example. In this attack, a malicious user sends many SYN packets to the victim and
does not respond to any of the acknowledgement packets. As a consequence, the receiver is
overloaded with irrelevant packets and cannot reply to messages that are received from
legitimate clients. The SYN cookie protects recipients against the SYN flood attack. In this
solution, the receiver, instead of creating state upon the reception of the SYN packet,
encrypts the SYN packet and sends it back inside the reply message. This procedure is
quite easy to implement and eliminates the SYN flood effectively. This kind of mechanism
is supported by the Stream Control Transmission Protocol (SCTP). However, this
procedure is not supported by the TCP protocol. [4]

2.2.2 Smurfing

The Internet Control Management Protocol (ICMP) allows end users to send an echo
request message in order to discover whether a destination host is alive or not. The echo
packets can be sent and replied to using broadcast addresses in some implementations of
the protocol.

To perform this attack, echo packets are sent with the victim’s address forged as a source
address and relayed to the broadcast address targeting all hosts in a subnet. These hosts that
participate in the Smurfing attack are known as smurf amplifiers. A smurf amplifier sends
back the echo replies to the victim entity and thereby it makes the victim system
unresponsive to incoming packets.

Guarding network elements and users against smurfing can be done by excluding the
broadcast ping capability from the Internet protocol implementation. [4]

2.2.3 Eavesdropping

In a compromised network, since a large number of connections established over the global
network are unsecured and exchanged data flows are not encrypted; sniffing data traffic is
a possible attack. Cryptography is proposed as a solid counter measure to snooping. [44]

2.2.4 Data Modification

An attacker may manipulate data which is intercepted on communication facilities. This
attack targets the data integrity and in the same way as eavesdropping it can be prevented
by encryption. [9]

 11

2.2.5 Distributed Denial-of-Service Attack

The Denial-of-service (DoS) attack is one of the most common network layer attacks. In
DoS attacks, an attacker brings down a single destination and does not allow the victim to
operate normally. The DoS attacks can be eliminated by locating the hackers and filtering
the data flow coming from those IP addresses. [10]

Since protecting systems against a DoS attack from a single IP address is quite
straightforward, therefore the more complex form of DoS attack called Distributed Denial-
of-Service (DDoS) is developed by attackers to defeat this weakness.

In this attack, the attacker firstly exploits a flaw in one computing system and makes use of
it as a DDoS master. Then the master system gains control of a collection of hosts and
installs the DDoS attack agents on the compromised machines. The DDoS attack is being
launched when the intruder sends a trigger signal to the infected computers and as a result
those machines overwhelm the specified destination with a large number of unsolicited
packets. [4] The DDoS attack, unlike the DoS attack, is very difficult to defeat. In other
words, the real hacker could not be discovered, even though the victim finds the sources of
the attack because they are intermediate systems just being compromised to launch the
DDoS attack and not the genuine attacker. In most cases, these controlled hosts take part in
the DDoS attack unknowingly. [10]

 Figure 2.2: Distribute denial of service attack

The ICMP trace back message is being proposed and added to the standard in order to
counter the DDoS attack. [7]

 12

2.2.6 Spamming

The intention of a spammer launching a spam attack is fraud or selling something (like
Viagra) or attracting the user to a site that will download a virus/Trojan to the victim. To
do a spam attack, the spammer forges a new email account and starts sending huge
volumes of spam to a list of the legitimate email addresses that can be derived e.g. from
unscrupulous websites. [2]

2.2.7 IP Spoofing (Identity Spoofing)

For a long time malicious hosts have exploited various ways to conceal their real identities.
IP spoofing is one of the well-known techniques used by hackers to mask their identities.
[46] In IP spoofing, an attacker masquerades as a legitimate system by generating packets
with fake IP addresses. To be exact, the source address field of the IP header is replaced
with an IP address that does not belong to the actual sender. Address spoofing is usually
feasible only in UDP, ICMP and SYN. After SYN in TCP it is not possible to spoofed
address. [15]

Let us assume there is an active connection (e.g. UDP connection) between two
communicating end users, the partner and the victim, as shown in Figure 2.3. Within the
ongoing session, a pirate creates an IP packet with the partner’s address as a source address
and forwards it to the victim system. In the TCP/IP suite, the identities of the sender and
the recipient are not verified by the network elements and hosts. Therefore, when the
message with a spoofed address is received, the victim assumes that the message was
originated from the partner; thereby it accepts the packets and sends back replies to the
partner iteratively. In the described scenario, the partner can be the victim and the victim
can be the reflector. The spoofing attack can have more destructive effects on the
destination system if the reflectors are amplifiers. [9]

 Figure 2.3: IP spoofing

 13

Attackers aid DoS attacks with IP spoofing. It means a single attacker can send many
packets with various spoofed IP addresses and thus take the targeted system down. Using
random spoofed addresses in forged packets makes eliminating unwanted traffic very hard.
Since it seems that the flood of traffic comes from different directions, consequently it is
difficult to trace back the packets. [45]

Additionally, IP spoofing could be used in the applications and networks in which hosts
are identified and authenticated based on their IP addresses, however, TCP packets cannot
be used easily with spoofed source addresses. In these cases, the hacker pretends being a
trusted system by using spoofed addresses, thereby gaining an unauthorized access to
victim’s data. This attack results in monitoring, manipulation and corruption of
information. [8]

The IP spoofing is widely used to launch a wide range of attacks. These types of attacks
can be divided into blind spoofing, non-blind spoofing and man-in-middle attack.

In the non-blind spoofing, an attacker and a destination system are residing in the same
subnet. Consequently capturing the sequence and acknowledgement numbers is not a
costly process. The attacker first breaks the ongoing connection down and then re-
establishes the session with a correct sequence and acknowledgement number. This attack
is known as session hijacking.

On the other hand, sniffing the sequence and acknowledgement numbers is not feasible in
blind spoofing. Instead, the attacker sends many packets towards the victim system in
order to guess the sequence and acknowledgement numbers precisely. According to the
aforementioned explanation, it is obvious that blind spoofing is a more complicated and
time-consuming process than the non-blind spoofing attack.

A limited number of countermeasures like ingress filtering and encryption have been
proposed to eliminate IP spoofing from the global Internet. This fact implies that it is rather
hard for the network elements to detect malicious hosts who exploit spoofed identities or
addresses.

Adding the ingress and egress filtering functionality to border routers is a primary action
usually taken in the spoofing protection technique. In the filtering mechanism, the inbound
interface through the Access Control List (ACL) implementation drops the incoming
packets with the private IP addresses. Furthermore, inbound messages with a local IP
address as a source address should be filtered out by this interface. The outbound interface

 14

can also help spoofing defense by specifying a range of the legitimate private IP addresses
accurately. [45]

2.2.8 Man in the Middle Attack

The Man in the Middle (MITM) attack can be seen as active eavesdropping. It
encompasses different types of attacks including two forms of IP spoofing which were
described earlier. To launch a man in the middle attack, a hacker sits between two
communicating end points and tries to gain control of the data traffic. The attacker often
manipulates or corrupts the captured packets and then forwards them to the targeted victim.
In the extreme cases, the malicious user establishes an independent connection with the
victim systems and impersonates either the recipient or the initiator of the conversation.
This makes the attacker able to access the victims’ secret information while both sides of
the communication believe that they are conversing with a trusted host. [45]

Mutual authentication is known as a main solution for preventing MITM attacks. For
instance, the communicating parties could be authenticated and verified through a trusted
certificate authority. [11]

2.3 Firewalls

A firewall is the most common and effective way to protect the internal network from the
public Internet and hence provides a level of security for all outbound and inbound
connections. By separating the trusted local network from the outside world, a firewall
limits the impact of the security problems of the Internet on the internal network. Most
often, a firewall stands between a corporate network and the global network. The existing
firewalls in the market fall into two categories: The host based and network based
firewalls.

Since all incoming and outgoing data traffic passes through a single access point where the
firewall is residing, the firewall is capable of tracking what exactly is taking place in the
network. Commonly, a firewall makes a decision whether a packet that is either sent to or
received from the Internet is legitimate or not. It is more convenient to apply the security
policies in one entity (i.e. firewall) rather than distributing the security decisions over a
large number of network elements.

Each packet can be analyzed and filtered based on the different layers in the TCP/IP suite.
According to this criterion, there are three types of firewalls: Packet filtering, circuit
gateways, and application gateways. [53]

 15

The packet filters usually incorporate with routers which interconnect various networks
and thus deliver packets to particular destinations. They filter out packets according to the
IP addresses and/or port numbers. Mostly, the packet filters are stateless. It means that they
do not keep any record of the processed packets. Filtering on either the incoming or the
outgoing interfaces being performed using a list of eligible hosts and services and a
blacklist of the malicious users.

The spoofing attack can be prevented by packet filters. To accomplish this, they inspect
inbound packets to block those malformed packets that use the private or loopback
addresses as source addresses. This functionality is named egress filtering. In addition,
outgoing packets must have the valid source addresses; otherwise they will be dropped by
ingress filtering.

The complexity of filtering remarkably depends on the size of the internal network’s
address space. Moreover, the packet filtering is not accurate enough to apply a large
portion of the security rules. [12]

Circuit gateways are another form of firewalls in which the packets are filtered at the
transport layer of the Internet protocol stack. They are more prohibitive than packet filters
and add many useful services to existing firewalls like encrypting data flows between two
firewalls.

The circuit gateways cannot guard systems against the application level attacks. Hence the
application gateway functionality in firewalls is proposed to fulfill this need. They serve
one or more applications and apply the security policies that need finer control granularity
than what packet filters and circuit gateways are able to do. Although, application
gateways incredibly reduce the security risks over the network, they add a significant delay
to the response time of the services residing behind firewalls. [4]

2.4 Cookie

In recent years, the DoS attacks are known as the most common security risks in that
attackers bombard a targeted victim with connection initiation queries and thus deplete the
victim’s resources including memory and CPU cycles. To limit this attack and its
destructive effects, Cookies can be used. The recipient does not create any state upon
reception of the session initiation query until it ensures that the source address of the
message is genuine. [30]

 16

In this procedure, the recipient replies to the initiation request with a block of text called a
cookie, which is used in order to figure out whether an initiator of the session uses a forged
IP address. If the initiator resides at the claimed address, it can resend the session initiation
request with the received cookie. After the two first messages, the responder just accepts
those session initiation requests that carry the same cookie; otherwise it discards the
packets originated from a malicious user.

Since in the described scenario, only the responder is involved in the cookie generation and
examination process, the initiator does not need to be aware of what exactly is happening
in the cookie generation algorithm and the algorithm can be defined locally. Due to this
feature, the different implementations of protocols and standards use various procedures
for generating a cookie. The only common principle among all these algorithms is that the
cookie must be recoverable by the responder based on the received packet not using any
saved state. [26]

2.5 Cryptography

Encryption is usually exploited to provide data confidentiality and integrity, whereas it
does not help with the availability of data. There are various cryptographic tools that use
different techniques and protocols for encrypting data, exchanging key information
securely and authenticating the origin of data. The strength of a cryptographic system is
measured based on its complexity. It is clear that a reasonable cryptographic block must be
complex enough, so that launching an attack becomes more expensive than what the
attacker is willing to pay. [50]

In the encryption process, a plain text is transformed into humanly unreadable text which is
known as a ciphertext. The original text can be derived from the ciphertext with a reverse
conversion named decryption. However, as the encryption algorithms are public, keys that
are the fundamental inputs for these algorithms have to be secret. Figure 2.4 shows a
general data encryption process.

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 𝐶 = 𝐸𝑘 (𝑃) (1) 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑐𝑒𝑠𝑠
 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 𝑃 = 𝐷𝑘�𝐸𝑘 (𝑃)� (2) 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

 Figure 2.4: Data encryption terminology, Ek: encryption key, Dk: decryption key

A wide variety of encryption techniques are being used in order to encrypt cleartext into
ciphertext. Among these techniques, substitution is the easiest one in which each letter of
the cleartext is being replaced with the corresponding character in the ciphertext alphabet.

 17

Transposition is another way to encipher plaintexts. In this approach unlike substitution,
the order of characters in the cleartext is changed according to the value of the encryption
key. For instance, if 4 is chosen as an encryption key, firstly the original text must be split
into the fixed-sized segments (i.e. 4 characters). Then the first character of each segment is
fit into the beginning of the ciphertext. The second letters in each part come after them.
This pattern applied over and over until the ciphertext is built completely. [20]

Generally, there are two forms of encryption algorithms. The most popular one is
symmetric cipher. The symmetric cipher uses the same key for encrypting cleartext and
decrypting ciphertext. In contrast, some encryption algorithms are asymmetric and hence
they have separate keys for encipher and decipher messages.

2.5.1 Symmetric Cipher

In a symmetric cipher, a key called shared secret is used for both the encryption and
decryption function. The symmetric ciphers are categorized into two groups: block ciphers
and stream ciphers. A block cipher tool firstly divides data into fixed and equal sized
blocks and then enciphers each block of data. The encryption process of each block is
performed atomically. If the length of data is not dividable by the block size of a block
cipher algorithm, the input needs to be padded. In different block cipher algorithms like
AES [18], CAST [1] and Blowfish [42] the block size varies.

A stream cipher unlike a block cipher operates on the data bit by bit. To encipher data in
the stream cipher, initially a stream of bits is produced by using a key and then the
generated stream is XORed with the input. The encryptor and decryptor of the stream
cipher tool must be synchronized and they must use the same bit stream in the ciphertext to
recover the corresponding bits in the cleartext. As a consequence, if these two functions get
out of synchronization, the original input cannot be derived from the ciphertext. This
synchronization problem makes stream ciphers such as RC4 [39] less popular than a block
cipher. [16]

2.5.2 Asymmetric Cipher

Asymmetric cipher which is also called public-key cryptography exploits a pair of keys to
encrypt and decrypt messages exchanged over insecure communication links. In this
encryption system, a plaintext is enciphered by one of the two keys that is named public
key and can be deciphered only by the other one which is called the private key. The
private keys are produced internally and never distributed. Moreover, they are not

 18

derivable from the corresponding public keys. Therefore, the public keys can be
transmitted in the plaintext to any end systems who request encrypted communication. [20]

The application of a public-key cryptosystem can be divided into three different groups:
encryption/decryption, digital signature and key exchange. The encryption procedure is
implemented with the help of the public key described above. To generate a digital
signature, the sender uses its private key in order to sign the whole message or a shorter
form of it. Both communicating parties are able to swap key materials through their private
keys.

However, public-key cryptosystems use a wide range of cryptographic algorithms, but all
of them conform to similar principles. From a computational point of view, generating a
pair of keys via public-key algorithms must be facile. Besides in these methods data
encryption and decryption have to be computationally easy. For message authentication, it
must be impossible to derive a cleartext from a ciphertext only by knowing the public key.
[44]

2.5.3 The RSA Encryption Algorithm

Since in the symmetric cipher, the session key exchange has been problematic and secret
keys need to be distributed securely, therefore a public-key system is proposed as an
alternative solution and widely implemented.

The RSA [16] algorithm has been recognized as the most widely deployed public-key
encryption since 1977. This algorithm was designed and developed by Rivest, Shamir and
Adelman. To generate a pair of keys in the RSA scheme, firstly two large positive prime
numbers, p and q, are chosen and their multiplication (i.e. n) is computed. After that Euler
totient of n which equals to the product of (p – 1) and (q – 1) is calculated. As the next
step, an integer e that is prime to the Euler totient of n is selected. Eventually, the integer d
is computed based on the following formula.

 𝑑 ∗ 𝑒 𝑚𝑜𝑑 𝑞(𝑛) = 1 (1)

In this public-key algorithm, the public key is

 KU = {e, n} (2)

and the private key is

 𝐾𝑅 = {𝑑,𝑛} (3)

 19

Consequently, only the recipient who decrypts the ciphertext must be aware of d’s value.
On the other hand, e and n are available for both sides of the communication. To encrypt a
message M, a sender calculates

 C = 𝑀𝑒 mod n (4)

and furthers sends C to the desired target. On the opposite side, the receiver deciphers C by
computing

 M = 𝐶𝑑 mod n (5). [44]

2.5.4 Certificate Authority

The fundamental advantage of public-key cryptography is that public keys can be
broadcasted to any end systems in a large scale. Although, this feature seems very
beneficial, it has a serious defect. As there is no explicit authentication mechanism in the
public key exchange, it is feasible for a malicious user to pretend to be a trusted party and
send forged public keys to the targeted victim. After that, the attacker is able to decipher all
encrypted messages sent by the victim and thus gain an unauthorized access to the victim’s
confidential information.

To defeat this weakness, the public-key certificate is considered as an appropriate proposal.
Typically, a public key certificate ties a public key to the identity of the key owner and
digital signature. In fact, the signature is the whole certificate block that is signed digitally
using the private key of a trusted third party. Commonly, the trusted third party is referred
as a Certificated Authority (CA). A participant announces its public key to a CA over
secure channels and then acquires a certificate. Since then, the participant can advertise the
certificate instead of the public key. The integrity of the certificate can be verified through
examining the appended signature. [44]

2.5.5 One-way Hash Function

In hash functions, an arbitrary-size message is hashed into a fixed number of bits which is
called a Message Digest (MD). A hash function is known as a one-way function, if the
original block of data cannot be recovered only by knowing the corresponding hash value.
Furthermore, in terms of computation, it should be infeasible to find two different integers
(x ≠ y) so that they are hashed to the same MD by the hash function. This characteristic is
referred to as collision resistance. SHA-1 [38] and MD5 [21] are two examples of one way
hash functions that are widely used in cryptosystems. [44]

 20

2.5.6 Signature

Public-key systems can in addition to encryption be used to provide non-repudiation. To
achieve this, a sender encrypts a block of data with its private key and then on the recipient
side, the encrypted message is deciphered with the sender’s public key. The ciphertext
obtained in this scheme is known as a digital signature.

As only the sender accesses its own private key, no one else could encipher a message in
such a way that it could only be decrypted with the sender’s public key. In other words,
attackers are unable to modify messages without knowing the initiator’s private key.
Therefore, the integrity of data and the origin of data can be preserved through digital
signature. [20]

It is obvious that in terms of processing, encrypting the whole message is relatively
expensive. Consequently, for signing a message, a hash function is exploited to compute a
shorter version of the message (i.e. the MD) and further the MD instead of the entire
message is encrypted with the private key. In this approach, the whole message except the
signature is sent as clear text, thereby data confidentiality is not provided and
eavesdropping cannot be eliminated. [44]

2.6 Return Routability Check

The main objective of the Return Routability Procedure (RRP) is to verify that the sender
could receive packets at a claimed address. More specifically, the responder sends a
message towards the address that is claimed to be the source of the communication. If the
desired reply is sent back by the initiator, the validity of an address would be proven.

This approach does not require any form of authentication such as the public-key
infrastructure and in terms of timing, commonly can be performed within one round-trip
time. Given this, the RRP only provides a basic level of integrity and authenticity and does
not establish any secure associations between communicating parties. Moreover, the return
routability check reduces the chances of spoofing and DoS attacks significantly. RRP is an
efficient method with the assumption that the attacker has not compromised the routing
system in any of networks on the way from the sender to the receiver and rather has access
only to the hosts. [21]

 21

3 Some Basics of the Internet
This chapter is devoted to describing some basic concepts of the Internet including NAT,
Domain Name System (DNS) and fragmentation. The NAT subsections briefly explain
why the NAT schemes have been developed and how NAT devices work. The different
NAT traversal methods are also listed and described in this section. The concept of DNS
and motivations behind its existence are discussed in the DNS sections. At the end of the
chapter, the essence of fragmentation, the procedure invoked when the size of packets
exceeds Maximum Transmission Unit (MTU) of the communication links, is explicated.

3.1 NAT

The essence of IP address translation emerges when routing information, specifically IP
addresses, within a private address realm cannot be advertised in the external networks
because the same addresses are used in several private realms simultaneously and thereby
are not valid globally. The Network Address Translation scheme is aimed to interconnect
disparate address realms transparently. For this purpose, the NAT devices modify the
packet headers when they are sent from a private address space to the public realm or vice
versa.

Primarily, NAT was deployed to reuse the IPv4 address space and thus postpone IPv4
address exhaustion. In this approach, to extend the IPv4 addressing lifetime, one or a few
addresses that are reserved for the Local Area Network (LAN) are exploited to
communicate with the outside world. The hosts residing in the private network, behind the
NAT device are addressed with private IP addresses which are not unique across the
Internet.

NAT works well with the client-server model where end hosts behind a NAT make
requests to arbitrary severs in the public network. To cite an instance, let us assume a
scenario where a host in a private realm intends to initiate a connection with a specific
server. The packet, on the path to the destination, firstly goes through the NAT device. The
NAT device modifies the source address of the packet field from the host’s private IP
address to the NAT’s public IP address. This mapping is written into the NAT’s mapping
table and kept alive for a limited period of time. Next, the NAT device forwards the
modified packets to the destination server. In the reverse direction, the server sends replies
to NAT’s public address. If a relevant mapping still exists in the mapping table, the NAT
device modifies the address fields of the packets correspondingly and delivers them to the
end host.

 22

However, there are a wide variety of NAT devices; the traditional NAT is the most
commonly deployed type of NAT device. The traditional NAT is divided into two different
categories: 1) the basic NAT, and 2) the Network Address / Port Translator (NAPT). In the
basic NAT, only the IP address is mapped while the NAPT translates both IP addresses and
transport identifiers. A NAT device regardless of its type performs the address binding
statically with a fixed address assignment or dynamically at a session initiation.

3.2 Basic NAT

The basic NAT device assigns a certain range of IP addresses to the local hosts in the
private address realm when they relay packets to another realm. To be exact, as a host in
the private domain sends packets to a server in the external domain, the basic NAT which
sits on the border of these two address realms allocates one of the public addresses for the
host and changes the source IP address to this value. In the address binding phase, all
related fields in the packet headers such as checksum that are dependent on the source
address field must be updated correspondingly.

3.3 NAPT

NAPT permits numerous private hosts to be multiplexed into a single external IP address at
the same time while each session is established with different transport identifiers. To do
this, NAPT in addition to IP address translation, translates transport identifiers (TCP/UDP
port numbers, ICMP query ID) as well. In other words, as a local endpoint originates
packets to an external host, the NAPT maps the internal IP address and the internal
transport identifier to the public IP address and the public transport identifier. The inverse
translation is being done for the inbound packets. [43]

3.4 NAT Address Assignment Behavior

For knowing NAT’s mapping behavior it is necessary to describe how one or more public
IP addresses are reused for messages that are originated from a set of internal users and are
destined to the external hosts. More formally, various mapping practices follow several
techniques to execute the translation between the pair of private IP address and the private
transport identifier and the pair of external IP address and the external transport identifier.
The NAT’s translation principles can be explained as follows.

Endpoint-Independent Mapping: The NAT only keeps one entry in the mapping table
for all packets originating from the internal host with the same private IP address and
transport identifier. These packets further can be routed to any external endpoints. It means

 23

that as long as traffic is coming from the same local IP address and port, the corresponding
mapping does not alter.

Address Dependent Mapping: There is a single mapping in the NAT table for packets
being relayed from the same private IP address and transport identifier to the same external
IP address. The transport identifier of the external destination does not play any role in this
mapping.

Address and Port-Dependent Mapping: The NAT maintains different mappings for
packets being sent from the same private IP address and port to the same external IP
address but distinct ports. More specifically, as soon as the host with a private IP address
and port starts conversing with a second public application that either has a different IP
address or port, the NAT creates a separate mapping for this newly established connection.
[6]

3.5 NAT Traversal Issues

The NAT must manipulate the packet headers at layer 3 and 4 in order to transmit packets
from one realm to another. Furthermore, an inbound packet can be delivered to the private
end system only if its addressing information is matched with one of the NAT table’s
states. Otherwise, it will be dropped by the NAT because it does not have a mapping in the
NAT table and thereby it is infeasible for the NAT to find a relevant internal destination.
The NAT traversal issues that are closely related to trust concept are fitted into four
classes.

The first issue appears when some protocols (e.g. SIP) include the IP addresses within their
payload. Since the conventional NAT does not function above layer 4, it fails in a situation
where a sender resides in the corporate network and uses a locally significant IP address in
outbound packets’ payload. To overcome this, an ALG, which provides protocol specific
processing, is proposed as a solution. However, the ALG fails when encryption is used.
Moreover, for every application protocol, the separate functionality must be implemented
in the ALG.

The second area where NAT devices cause difficulties is peer-to-peer applications. In the
traditional Internet, the predominant communication paradigm was the client-server
scheme. Consequently, the network address translation scheme was also designed with the
assumption of asymmetric connection establishment in mind. For this reason, the NAT
only operates where an internal host in the private realm initiates a connection with a

 24

server residing in the public Internet. In contrast to client-server applications, peer-to-peer
applications require bi-directional connectivity. In other words, in a peer-to peer
application, the connection can be established by any of the parties and hence there is no
difference between the communicating peers. This results is a problem in the NAT
functionality particularly when either one of the hosts or both are located behind NATs. To
give an example, let us assume that a host in the private network tries to provide a specific
service for a set of clients. In this scenario, the host is unable to fulfill its clients’ needs
because there is no mapping for the incoming packets and thus they get dropped by the
NAT.

The two first categories described above combine and form the third group. The Bundled
Session Applications (e.g. FTP, SIP/SDP) uses realm-specific addresses within their
payload fields for the additional connection establishment. In these applications, the first
connection is known as a control plane, while the connection established subsequently is
called data plane. Carrying realm-specific IP addresses in the payload is not the only
problem here; rather the issue is the data session when it is initiated from the public realm
to the private realm.

The last category is related to the unsupported protocols such as the Stream Control
Transmission Protocol (SCTP) that have been developed recently. The NAT could not
support these protocols even if a private host establishes the session with an external host.
This is because the NAT does not have translation functionalities for these protocols. This
group also encompasses protocols such as the encryption protocols in which the NAT
cannot access layer 3 or layer 4 headers. [37]

3.6 NAT Traversal Techniques

In this section, some of the most deployed techniques for traversing NAT devices are
explained briefly.

3.6.1 Session Traversal Utilities for NAT

Session Traversal Utilities (STUN) for NAT is a protocol that is used extensively by other
protocols in the context of NAT traversal. A host through this protocol can learn the
allocated IP address and port number by the NAT. Moreover, it can be used either for
examining the connectivity between two hosts or keeping mappings in the NAT table
active for a certain period of time. The STUN operates with a wide variety of NAT devices
without making any changes in their operation. [41]

 25

The STUN is a client-server protocol. As such, it needs a STUN server in the public
Internet and a STUN specific application installed on all client end systems. Figure 3.1
demonstrates the message flow in the STUN system.

 Figure 3.1: Message flow in STUN [revised] (Virtanen et al. 2009)

To determine the NAT binding, a private node (PN) that is located behind the NAT sends a
binding request to a STUN server. The binding request goes through one or more NAT
devices before it is forwarded to the STUN server. Therefore, the NAT will change the
source address field of the packet and further add the respective mapping to its table. As a
consequence, what exactly the server sees as a source transport address in the binding
request is the public IP address and the port allocated for PN (i.e. GA1:port2) by the
nearest NAT. This addressing information is named a reflexive transport address. The
server sends back a binding response that carries that reflexive transport address within its
payload towards the correspondent PN. After that, PN can advertise its public transport
address across the public Internet and hence communicate with any external hosts. Note
however, that depending on the type of NAT, it may be necessary to repeat this procedure
for each pair of an external communications partner and application. [47]

3.6.2 Traversal Using Relay NAT

Typically, the “hole punching” technique is used to find a direct communication path
between two hosts where a host behind a NAT tries to initiate a session with a preferred
peer that might be located behind another NAT. This technique will fail if the hosts
involved are behind NATs that have a special mapping behavior such as "address-
dependent mapping" or "address- and port-dependent mapping".

 26

The Traversal Using Relay NAT (TURN) protocol has been proposed to complement the
limitation of the STUN system for which the direct communication path between two hosts
cannot be discovered without intervention of any relay servers. The TURN system uses an
additional network element called relay server to relay messages between two end systems.
A relay server commonly resides in the public Internet and needs high-bandwidth
connection to the Internet.

The TURN similarly to the STUN is a client-server protocol. It allows a client in the
private realm behind one or more NAT devices to request a public transport address from a
TURN server and thereby receive TCP or UDP sessions at the allocated address.

To begin the TURN operation, a TURN client must have the address of a TURN server.
The address can be discovered by using for example the SRV records or from a
preconfiguration file. As the next step, the client sends a TURN allocate request to the
TURN server. The TURN system exploits a digest challenge mechanism to perform the
authentication and integrity checks for both the allocate requests and the replies. As soon
as the allocate request has been authenticated, the TURN server gives back an allocated
address inside the allocate response to the client. The TURN client cannot receive data
from a peer until it sends a send request message which contains data to the TURN server.
The server forwards the data derived from the packet to the peer specified by the
destination field. In the opposite direction, the data received at the allocated address from
the peer is encapsulated into a Data Indication message and relayed back to the client. The
simplified TURN operation is represented in Figure 3.2.

 Figure 3.2: Basic message flow in TRUN [revised] (Virtanen et al. 2009)

 27

If the TURN client wishes to establish connections to more than one peer, it must send a
send request message to every peer separately. Besides, the allocated transport address can
be published to any hosts that wish to communicate with the client. [47]

3.6.3 Interactive Connection Establishment

Interactive Connection Establishment (ICE) allows Bundled Session Applications to
traverse any type of NAT device. More specifically, ICE enables peers to collect the
adequate information about their topologies and thereby discover their potential
communication paths by using the STUN and TURN techniques. Each of these paths is
named a candidate. In addition, ICE is one of the most comprehensive and optimum
solution among the proposals which have been presented for the NAT traversal problems,
because it works even under very complicated topologies and makes use of relay only if it
is needed.

The main objective of ICE is to discover which pairs of candidates can be used for
communication by the agents. To do that, at first the agent must collect its candidates. The
candidates can be separated into three categories. The first category is called host candidate
and obtained from the local interfaces (e.g. Ethernet). The second one is server-reflexive
candidate and the agent gathers them by sending request messages to the STUN server.
The last category is relayed candidates and they are gathered from the TURN servers. In
some cases, the TURN server provides both relayed and server-reflexive candidates of the
agent simultaneously.

As the agent gathers and prioritizes its candidates based on a certain criteria, it sends an
INVITE request message to the peer agent. This message carries the agent’s candidates
gathered before. Upon the reception of this message, the destination agent gathers and
prioritizes its candidates in the same way. In the next step, it replies to the INVITE
message with the message that contains its own candidates.

At this point, each agent knows the peer and its candidates. Therefore, each agent makes
different combinations from each of its candidates and each of the candidates from the
peer. Then, the STUN messages are relayed from one agent to another one in order to
check the connectivity of each pair of candidates separately. A data session can be
established between the agents once a point of communication is discovered. [40]

The disadvantage of ICE is that due to the erratic nature of NATs and packet loss, it uses
up to 100 messages to select the best candidate pair for one connection. When an

 28

application has 2 connections, the maximum is 200 messages. As a consequence, the
maximum session setup delay grows to tens of seconds. [31]

3.6.4 ALG

ALGs are the protocol specific translation components that collaborate with NAT routers
in order to connect hosts in disparate address realms. An ALG may interact with the NAT
for several reasons. For instance, it modifies the application specific payload by using the
NAT state information and thereby allows them to traverse NAT transparently.

In some cases, ALGs do not exploit NAT state information. Instead, they may evaluate and
examine the application payload and further ask the NAT to add an extra mapping to its
table. However, ALGs similarly to proxies provide the application specific processing
especially for session-oriented applications, but unlike proxies they do not require any
changes in application clients and also do not interact with clients by using a special
protocol. [43]

3.7 DNS Overview

This section gives an overall picture of the DNS system which is extensively used across
the Internet.

3.7.1 The Domain Name Space

DNS is a distributed and hierarchical database which was originally designed to provide a
name resolution service across the Internet. Mainly, it is used by end users and various
Internet services to translate host names (i.e. human readable domain names) into
numerical IP addresses used to identify hosts. [3] The main component in the DNS
structure is the name space. DNS name space is a hierarchical tree structure that is
constructed from several nodes. Each node is associated with a set of resources and has its
own parent. Additionally, each node has a label whose length can be expanded to up to 63
characters. The root node unlike other nodes does not have any parent and its label is null
(zero-length). [48] The absolute domain name for every node is the sequence of labels
which are read from that node towards the root. An absolute domain name which is also
known as a Fully Qualified Domain Name (FQDN) must be unique in the respective tree.
To achieve this, the sibling nodes may not have same labels. In domain names, each node
label is separated from the following label on the path by a dot. [3]

 29

The DNS name space is separated into zones. Each zone has a set of authoritative servers
that usually appear in two flavors: primary name server and secondary name server. The
primary name server maintains all the resource records belonging to that zone in the master
file. This file must be updated by the administrator to make a newly added host to that zone
globally reachable. In the secondary name server, the zone data is derived from the primary
server. The data is transferred between authoritative servers by using the zone transfer
query. [22]

3.7.2 Resource Records

The information associated with domain names is held in the Resource Records (RRs).
Each RR contains the different fields including name, class, type, Time to Live (TTL) and
data. The TTL field specifies how long the record in a caching server would be valid. Upon
the corresponding timeout the query must be sent to one of the authoritative DNS servers.
Also, RRs may present various data based on the given value for the name and type
parameters. [35] The message structure of resource record is presented in Figure 3.3.

 Figure 3.3: The message structure of resource record

For instance, if Type and Name fields are set to A value and a hostname respectively, the
Value parameter will contain the relevant IP address. Using this RR, the hostname can be
mapped to the corresponding IP address. The Value field presents the hostname of the
authoritative server of the domain that is defined in the Name field if the Type parameter is
NS. The authoritative DNS server is aware of the procedures that should be followed to
obtain the IP addresses corresponding to the hosts inside the domain. If CNAME is
assigned to the Type, the Value field has a canonical hostname of the Alias. [27]

Yet another type of resource record is called Naming Authority Pointer (NAPTR). NAPTR
usually carries one or more Uniform Resource Identifiers (URIs). A URI is a flexible
format that is used to identify end users engaging in any type of communication such as e-
mail, VOIP, Instant Messaging (IM) and etc. This enables DNS to perform name lookups
for a wide range of services. Each NAPTR record holds the list of contacts which is sorted

 30

based on the Order and Preference fields. In a case that the list has more than one contact
address, the client can switch to an alternative address once the destination host is not
responding through one of the given contact addresses.

The most common usage of NAPTR is to code rule-sets in the DNS. NAPTR contains a
regular expression that is used by an application in order to transfer a string into a new
domain name. Since the regular expressions describe information in an extremely compact
manner, thus large amounts of data by means of these expressions can be encoded in a
relatively small DNS message. In a NAPTR record, flags and other parameters supervise
rewriting and re-delegation operation. [32]

3.7.3 Resolvers

The DNS clients named resolvers are used by applications to retrieve information from the
authoritative name servers. Commonly, a resolver generates a query upon a request from a
program and sends it to the primary name server. When the resolver receives the DNS
reply, it derives the required information and eventually sends this information back to the
initiator application. [3]

3.7.4 DNS Message Structure

There are different types of DNS messages including query and response, in the DNS
protocol. Additionally, there is one more DNS message called DNS update but it will not
be examined in this thesis. All DNS queries and responses are encapsulated in the same
format. This format is separated into 5 parts as shown in Figure 3.4. [35]

 Identification Flags

 Number of Questions Number of Answer RRs

 Number of Authority RRs Number of additional RRs

 Questions

 Answer Resource Records

 Authority Resource Records

 Additional Resource Records

 Figure 3.4: DNS message format

 31

The first part is the header and exists in all DNS messages. This section is 12 bytes long
and contains several fields such as identification, flags, number of RRs, etc. Identification
always is generated upon creating a DNS query and identifies the query. It also has to be
copied to the corresponding response message.

There are various flags in the flags field. The query/reply flag specifies the type of
message. The message is a query if this flag is set to 0; otherwise it is a reply. The name
server sets the authoritative flag to 1 if it is the authoritative server for the queried domain
name. In a query message, the querying host may set the recursion-desired flag to 1 and
hence ask the queried name server to perform recursion resolution if it does not have the
respective record. Also, the recursion-available flag is set to 1 in the case that the DNS
server supports recursion. As the following parts in the message are variable-length, the
number of fields determines their length separately. [47]

The four other sections that come after the header section are encoded in RR format. The
question section, which uses fields such as query type and query name, conveys a query to
a DNS server. The answer part may carry one or more RRs that are sent in response to the
received questions. The authority section includes RRs that refer to an authoritative name
server. [35]

3.7.5 Name-to-Address Resolution

However, DNS provides a large number of services for TCP/IP-based networks, the basic
idea of DNS is to perform the name-to-address resolution. The purpose of the name-to
address resolution process is to resolve the IP address of the queried hostname using the
distributed DNS databases; however, a host does not necessarily have a name. Typically,
the mapping process takes place when an application running on the host wants to start
communication with a remote host. [20]

To do that, firstly a resolver running on the initiator machine sends a DNS query
containing the remote host name to a local name server that acts as the primary name
server. If the name server finds the IP address corresponding to the remote host name in its
DNS database, it simply replies to the querying host with this IP address. In contrast, if the
referred name server is not an authoritative name server for the zone of the queried domain
name, its database does not contain the host name. In this case, the local name server
usually forwards the query to the root DNS server. Currently there are 13 root domain
name servers across the global Internet. They are authoritative servers for a huge number
of organizational domains. [35]

 32

The resolution process can be carried out in two ways. In the recursive resolution, the root
name server returns a referral to the second-level name server that is responsible for the
queried domain name. Upon reception of the reply, the local name server forwards the
same query message to that server and gets a referral to the next level DNS name server.
This method is applied over and over until the local name server queries the authoritative
name server and hence obtains the IP address of the remote host from the response
message. A recursive name resolution is shown in Figure 3.5.

 Figure 3.5: A recursive name resolution

On the contrary, when the resolution method is iterative, the local name server will not
query the root name server if it does not have the queried domain name. Instead, it sends
the query to the closest name server in the name space hierarchy. The request is passed on
to next-level domain name servers repeatedly until the authoritative name server that has
the IP address of the requested host name is found and thereby returns the destination’s
address to the local name server. [20]

3.7.6 Address-to-Name Resolution

In addition to the name-to-address resolution there is another resolution process called the
address-to-name mapping. The queries sent for this purpose are called pointer queries.
They are usually generated by system programs in order to handle management and
debugging activities. Furthermore, the email servers and file servers use these queries to
verify end users.

 33

To perform a reverse DNS lookup, the resolver sends a pointer query containing an IP
address to a name server. Upon the request, the name server returns the host name for the
given IP address. In the hierarchical structure of the DNS namespace, the domain name is
used as a search key. Therefore, inverse queries would need to check all domains attached
to the nodes in the tree to find the requested IP address. As this searching process is
impractical, the in-addr.arpa domain is defined for inverse queries. In this domain, the
nodes are labeled with IP addresses of hosts but in the reverse order. The reverse name
lookup can be performed in a more efficient way by executing a traversal of node
hierarchy under in-addr.arpa. [20]

3.8 Fragmentation and Reassembly

Fragmentation happens when the size of a packet exceeds the MTU of any link along the
route of the packet. As a result, the router cannot forward the packet due to its size and
splits the payload inside the packet to multiple smaller segments. Next, each segment that
is also referred to as a fragment is encapsulated in a separate packet whose length is not
greater than the smallest MTU of involving networks in the path and further forwarded to
the destination. [14] On the recipient side, the IP layer reassembles the data fragments
derived from the incoming packets and thereby reconstructs the original packet.

A set of fields in the IP header including identification, flags and fragmentation offset are
defined specifically to facilitate the fragmentation and reassembly operation. The
identification field has the same value in all fragments, thus the remote host uses this
parameter to identify each received fragment and relates it to the respective original packet.
The total length always determines the size of the original packet before fragmentation.
Consequently, each smaller packet contains the same value in this field. As an additional
benefit, the IP of the destination host can use this value to recognize whether all fragments
related to the original packet are received completely or not.

The offset field specifies the position of first byte of the payload within each fragment
relatively to the original payload. This field is expressed in multiples of 8 bytes. The flags
field contains two flag bits: don’t fragment (D-bit) and more fragment (M-bit). When the
sender sets the D-bit to 1, the routers on the path to the destination host should not
fragment the packet. The M-bit is set to 1 in all fragments except in the last one. The basic
idea of the time-to-live field is to detect packets stuck in loops. Also it determines the
maximum time period a host has to wait for each fragment that might be delayed,
discarded or corrupted.

 34

Despite that the fragmentation operation seems rather easy; it has bad effects on a number
of protocols. For instance, the TCP protocol generates an acknowledgment message when
the destination host receives all fragments belonging to the original packet. Therefore, if
one of the fragments contained within the smaller packets gets lost due to any reason, the
source host after a certain time period (i.e. specified in the time-to-live field) will
retransmit the initial packet completely. It results in rapid consumption of the network
resources and reduction in network performance. To overcome this, in most of the current
TCP implementations, fragmentation is not allowed. This is done by defining the
maximum data block size (limit). [20]

The path MTU discovery can be used as an alternative solution. In this procedure, the
Don’t fragment bit in the IP header is used to discover the smallest MTU of the links on a
path. To do that, a sender considers the MTU of its first hop as the MTU of entire path and
then sends a number of datagrams with the DF bit on towards a destination host. If the size
of some of the datagrams exceeds the maximum MTU of any networks on the path, the
router residing in that network will drop them and send back an ICMP Destination
Unreachable message with a code that means "fragmentation needed and DF set". When
the initiator host receives these messages, it chooses a smaller value for the MTU of the
path. Once any of the datagrams is received by the destination host without fragmentation,
the MTU discovery process completes and the assumed MTU is considered as the smallest
MTU of the path. [36]

3.8.1 Incoming Fragmented Packets at NAT Device

Fragmented packets may be delivered to a NAT in an arbitrary order, depending on the
packet ordering, network status and implementation of the fragmentation mechanism.
Upon the reception of fragmented packets, different NAT devices exhibit different
behaviors. Some NATs only forward the fragments arriving in order. This behavior is
referred to as "Received Fragments Ordered". In contrast to this, "Receive Fragments Out
of Order" relates to the NATs that are able to receive the fragments in any order. There are
NATs in which any fragmented packet is discarded regardless of the receiving order. This
property is known as "Receive Fragments None".

Fragmentation has been a target for a number of attacks. More specifically, attackers take
advantage of either passing fragments through NATs or storing out-of-order fragments to
launch several attacks. For instance, DoS attacks are likely to happen where a NAT has to
store out-of-order fragments prior to processing them as a whole message containing all

 35

headers. The problem of fragmentation for NATs is that the fragments after the first one do
not have port information while the NAT depends on it. [5]

Let us assume a scenario where a malicious user divides a packet into rather small
fragments so that some fields of the transport header are forced to be carried within the
second fragment. Consequently, an illegitimate packet may go through a NAT, because
the filtering rules that are related to those fields cannot be applied only by knowing the
initial fragment. This attack is referred to as a tiny fragment attack. To eliminate this type
of attack, a router can simply impose a specific fragment size limit on incoming packets to
ensure that the first fragment includes all compulsory header fields.

The current reassembly implementation of the IP protocol allows each fragment to overlap
with other fragments which are received before and thereby overwrite over their segments.
There is an attack called overlapping fragment attack that has been formulated based on
this weakness. To launch this attack, a hacker generates a number of fragmented packets so
that the first fragment while carrying a legitimate data could go across a NAT. The
subsequent fragments that have non-zero offset, might overlap with the previous-received
fragments and hence change them. This opens up an opportunity for passing unauthorized
packets through a NAT. [52]

 36

4 Customer Edge Switching
This chapter introduces the main architecture and detailed description of the Customer
Edge Switching. The chapter initially presents the basic idea of CES and further discusses
for which reasons this scheme has been proposed. The subsequent section examines the
CES operation in deeper detail.

4.1 Objectives

The CES concept is closely related to the reachability problem that the current Internet has
due to intervening middle boxes especially the NATs. More specifically, the reachability
problem appears where a host in a private address realm waits passively for incoming
sessions from other address realms and wants to be globally reachable. Several proposals
of which some were explained in Chapter 3.6 have been developed in the context of the
reachability topic, but still a need for more powerful and efficient solution exists. To meet
these requirements, the CES scheme has been proposed and implemented in the
Department of Communications and Networking in the Aalto University. This proposal
aims to shift the Internet towards a more secure and trustworthy direction. It also enables
hosts residing in the public Internet to initiate a connection with a remote host in a private
network behind a NAT. [23]

4.2 Requirements

Customer Edge Switching provides global connectivity between hosts that reside in
different private address realms. The connectivity is based on globally unique names,
locally or globally significant Identities of hosts/services or users and locally or globally
unique addresses. An enhancement to state of the art is that a private host can be a server,
not only a client. A CES is an extension to Network Address Translator. A CES hides the
addressing of the customer network it serves. The inbound CES is responsible for detecting
and eliminating source address spoofing. Given that this is effective this makes it
reasonable for the inbound node to collect evidence of misbehavior of the sender and
attribute the evidence to the sender’s customer network or directly to the sending host.
Because the trust requirements of various applications are very different, Customer Edge
Switching offers a choice of different types of Identities and a set of checks the inbound
node can make before admitting a new flow.

CES operates by means of DNS and NAT and acts as a gateway of a customer network to
the Internet. To be exact, the gateway, containing DNS and NAT functions is the only

 37

element where a network is adapted to the CES concept. However, most of the network
elements including end hosts will not require any changes to interoperate with the
proposed architecture. Although the Customer Edge Switching architecture reuses existing
DNS protocols and record types to resolve the addressing of remote hosts, it introduces a
special configuration of the DNS information. It was also assumed that the core network
between private networks could be based either on Ethernet or IP. [47]

Additionally the proposal needs no keep-alive signaling from hosts. In this solution, users
can be reachable from the public network because of regular network capabilities. It is also
desirable to fit all necessary network capabilities into regular network elements rather
using costly add-on servers. Moreover, each address realm can use its own forwarding
technology such as IPv4, IPv6, carrier grade Ethernet or legacy technologies. [24]

4.3 Customer Edge Switching Overview

The CES solution has been proposed to obviate reachability issues that exist in the current
Internet. It can also be seen as one way of implementing the Trust-to-Trust communication
model introduced by David Clark [13]. A purpose of CES is to provide global connectivity
for hosts that reside in private address realms.

A CES is a replacement and an extension to a NAT. A CES node in addition to the
fundamental NAT features contains other attributes to resolve the reachability problem of
private hosts. It allows inbound connection initiations with no need to any keep-alive
signaling from hosts in the private address space. As described before, only some special
configuration needs to be made in the existing DNS infrastructure without introducing
changes to neither the DNS protocol nor the DNS record types. A CES controls the
reachability and packet admission by applying diverse policies.

CES helps protecting the hosts from unwanted traffic. In this approach, it is possible to
point evidence of misbehavior to the sender's network or at least detect RLOC spoofing
and block the unwanted traffic. This motivates ubiquitous collection of evidence that can
be further processed automatically for fast detection and blocking of bot machines infected
by Trojans.

When user traffic is being transferred through a CES device, the IP address fields in the
packet headers are modified from private addresses to public ones or vice versa. This
conceals private addressing from external networks and reuses the private address ranges
several times. As a result, the address shortage problem of IPv4 mitigates and IPv6

 38

deployment becomes less urgent. Furthermore, a CES exploits globally unique domain
names, private IP addresses and arbitrary type of identifiers to provide global
communication across the Internet. It maps identifiers to locally significant addresses and
thereby delivers packets to hosts residing in the customer network. This behavior improves
trust and security on the address space boundaries. [23]

In terms of functionality, a CES operates like the tunnel router in LISP [17] especially
when it is connected to an IP core network. The difference is that instead of End Point
Identifiers that are actually addresses, CES introduces communications identifiers that are
never used for routing. It also resembles a realm boundary node in TRIAD [19]
architecture. The difference can be explained by differences in their routing approaches.
The CES uses the ID to address translation instead of the source routing used in the
TRIAD to make the private hosts globally reachable. This mapping is done based on the
trust paradigm. Moreover, a CES supports powerful procedures including return routability
checks to filter out unauthorized inbound traffic. [38]

4.4 CES Architecture

The CES concept classifies networks into Customer Networks (CuN) and Service Provider
Networks (SPN). From the IP routing point of view the former are stub networks i.e. they
do not carry transit traffic on IP layer. The end users may be attached to different CuNs.
There is at least one CES in every CuN. CES itself has a firewall and a pool of local IP
addresses for referring to user entities. On the other hand, each SPN encompasses several
provider edge nodes. To be exact, two separate edge switches associated with different
owners sit on the boundary of disparate networks. As a consequence, the ownership of the
network is divided into appropriate blocks. [23] A Customer Network is a trust domain
served by one or more CES devices. One or more Internet Service providers provide the
connection from one customer network to another. The ISP networks are seen as one
federated trust domain. The borders of trust domains conform to the boundaries of network
ownership. A trust domain provides trust services for its users. User traffic can be tunneled
over Ethernet core or IP or IP/MPLS core networks. Furthermore, the SPN network
includes a Directory Service (DS) that may be implemented for example by using the
DNS.

In this approach, an end host or a service is identified by an identity (ID) that is created
from a unique host name by applying hash or alternative internal procedures. The purpose
is to avoid publishing the private IP addresses across the Internet and thus isolate the
access, corporate and customer networks from the core network. The IDs can be classified

 39

into three different groups: globally unique IDs, locally deterministic 32-bit IDs like in
LISP and reasonable unique random values. Assurances of the validity of an ID vary from
privacy protection by the sender’s network to network operator or 3rd party certificates. As
the source and the destination IDs may need to be changed when special situations such as
attacks occurs in the network, therefore using globally unique ID is not necessarily easy
and cost efficient. On the other hand, according to the birthday paradox, it has been argued
in [23] that the length of random IDs should be from 60 to 80 bits where a customer
network aims to serve around 1M hosts. As a consequence, an IPv4 address field is not
long enough to carry a sufficiently unique random ID. Hence, the random IDs may be
carried in an ID protocol. A CES device or an ID server at the edge of a private network
uses the locally defined algorithms to generate and manage random IDs. Due to this
property, the process involving changing random IDs is less expensive than changing
global IDs. As an additional advantage, this type of IDs can remain invariable while
packets are crossing a multi-homed interface or end users are roaming into a foreign
network. The CES concept is demonstrated in Figure 4.1. [38]

 Figure 4.1: CES concept

4.5 Message Flow Across Trust Domains

The Customer Edge Switching solution reuses the existing DNS infrastructure including
common DNS protocols and resource record types to implement the DNS server resolving
names of remote hosts. Thus, if a server in a private realm wants to serve external client
hosts, firstly it has to register its own domain name in the DNS server. Besides, its NS
record must point to the authoritative name server of the corresponding customer network.
[38]

As Figure 4.2 depicts, a message flow begins with a DNS lookup query from Host A. In
other words, at first a client program running on Host A sends a DNS query for the A
record of Host B’s domain name. This message is routed to the DNS server via CES-A.

 40

The CES-A acts as an enhanced DNS proxy. Thereby, it first checks whether the queried
destination host is in the same private network. Then, CES-A picks up the DNS query,
changes it into a DNS request for the relevant NAPTR record and ultimately forwards the
modified DNS query to the DNS server. Commonly, the destination’s NS record refers to
an ID Server hosted by the inbound CES. Therefore, the DNS server passes the request to
CES-B. [23]

The addresses of the CES public interfaces are called Routing Locators (RLOCs). An
RLOC is a public address with a preference and has the properties: order and address type.
The RLOC types vary depending on the forwarding technologies such as IPv4, IPv6 and
Ethernet. The preference and order determine the selection of an RLOC from a set of
active RLOCs. [38]

CES-B sends back the DNS reply containing its RLOCs and the destination ID to the
outbound CES. The destination ID is carried in two parts within the reply message: ID type
and ID value.

Upon the reception of the reply (the second message in Figure 4.2), CES-A allocates a
local address for communication with Host B from its address pool. Then, it creates a
connection state containing the allocated local address, the destination ID and the RLOCs
referring to the inbound CES. The outbound CES does not forward the original DNS reply.
Instead, it changes the destination ID to the local address (oc: b) representing the remote
host to Host A and further returns the modified DNS reply to the local host.

After the name resolution phase, Host A establishes a connection with the destination host
using the stored information in the connection state. To be exact, Host A sends a message
with the local address as the destination address field to the CES-A (the third message in
Figure 4.2). The source ID can be generated in two ways. It may be derived from a source
host name and ports. The other option is to allocate an ID by CES. The destination ID is
retrieved from the corresponding connection state held in the CES. As the next step, the
packet is encapsulated in the IPv4 packet because the core network runs over IPv4. The
actual address that is used for routing the packet to the inbound CES is carried in the outer
header.

The generated state in CES-A in addition to the destination ID and respective proxy
address contains the source addressing information and the sender ID. Moreover, CES in a
similar way to NAT assigns certain timeout to each connection state. [23]

 41

Once the message from CES A enters customer network B, the inbound CES allocates a
proxy IP address representing the sender to Host B. [47] It also creates a state containing a
mapping from the source ID to the allocated address. The destination ID within the
message is exploited for the packet access control. More specifically, the inbound CES
based on the destination ID can make a decision whether the incoming connection is legal
or not. Furthermore, it maps the destination ID to the destination local address that
specifies the route to the receiver across the target realm. The simplified process of
message flow in CES is given in Figure 4.2.

 Figure 4.2: The message flow in Customer Edge Switching architecture [revised] (Kantola et al. 2012)

The inbound CES obtains the RLOC of CES-A and the ID of Host A upon the first packet
of the service flow. On the other hand, the domain name of Host A cannot be learned from
the incoming packets. Therefore, the inbound CES is unable to perform a DNS query and
discover the additional RLOCs of the outbound CES. A remote-end-on-demand routing
protocol such as CETP can be used to resolve this limitation. In special cases, the
destination domain does not return the destination ID and RLOCs within a DNS reply.
Instead, it refers to a separate ID protocol and ID server. However, using a separate ID
protocol adds several round trips to the name resolution phase and has bad effects on
performance. At the same time, it may reduce the risk of eavesdropping substantially. [38]

From the Host A point of view, CES-A works like a NAT. Generally the difference is in
admitting communication invitations from external networks where all destinations reside
in the private network. In general, a CES node operates in a similar way to a traditional

 42

NAT except that it provides bi-directional connectivity for private hosts and resolves the
hairpaining problem in a more efficient manner. [47]

In the described scenario, the outbound CES may receive several NAPTR records in
response to the DNS inquiry. This happens when the inbound CES belongs to a multi-
homed stub network and thus has multiple RLOCs. Since the CES only contains a DNS-
like interface, the NAPTR records can be generated dynamically. The outbound CES may
use a subset of RLOCs identifying the route to the inbound CES in parallel depending on
the forwarding protocols that are used across the core network and other parameters
specified in the NAPTR records.

This approach is compatible with well-behaved protocols like HTTP in which a DNS
lookup is used for learning the destination identifier and address, whereas it does not work
properly with the protocols that obtain the destination routing information outside the
DNS. For each protocol of this type, CES requires a protocol specific state machine. The
session-oriented protocols including FTP and SIP/SDP are examples of such protocol. The
protocol specific treatment in CES is relatively similar to what exactly happens in state-full
firewalls. Moreover, this proposal assumes that emerging application protocols use unique
domain names instead of IP addresses as identifiers and all destinations seem to reside in
the private network. Several ALGs for the Customer Edge Switching solution have been
implemented within other thesis works by Petri Leppäaho and Jesus Llorente. [28], [29]

When a host residing in a private address realm initiates communication with a public
server, CES node falls back to the regular NAT behavior. To make this possible, CES
cannot re-use the global address space for the local communication. For interworking with
legacy clients, a CES can contain the Private Realm Gateway (PRGW) functionality
providing connectivity to servers in a private address space. The idea of PRGW has been
prototyped by Jesus Llorente. [29]

 43

5 Customer Edge Traversal Protocol

This chapter examines CETP that is proposed as a new tunneling protocol in the
Communication and Networking Department of Aalto University in deeper details. [25]
The chapter is divided into three sections. The first section discusses the main ideas behind
the CETP proposal. Next, the chapter describes CETP packet formatting including the
header fields and the payload segment precisely. At the end, the chapter explains how
CETP assists the current Internet architecture to fulfill various upcoming demands while
making minimal changes in network elements.

5.1 CETP Objectives

The growth of the Internet to its current size causes a large variety of problems and
requirements that cannot be resolved by the original Internet architecture. The address
shortage of IPv4, existence of middle boxes such as firewalls, unwanted traffic, mobility
and multi-homing are the most common examples of such problems.

CETP is proposed as a part of an Internet Trust Framework (ITF) which consists of a
number of Hosts, subscribers, agents of communicating parties called Customer Edge
devices, ISPs, a Global Trust Operator (GTO) and applications involved in a
communication. CETP with the other components of Customer Edge Switching aims not
only to resolves existing problems in the Internet which are listed above, but also takes into
account future needs.

The protocol is designed for packet delivery from one CES to another while transporting
the source and destination IDs. In other words, the purpose of CETP is to tunnel a data
flow that was originally received from a private host between the network-edges and also
transport in-band signaling from one customer network to another. More specifically,
CETP differentiates between the payload and the control signaling. The payload includes a
tunneled data packet, whereas the control information section contains the signaling
information that is being exchanged between two CES devices. This type of signaling is a
step towards the implementation of cooperative firewalls.

Also, the CES with the help of CETP can be seen as a way of implementing the
identifier/locator split idea. To make this possible, CETP transports different types of
identities in the source and destination ID header fields. This method is more flexible and
scalable than present procedures like HIP that have been proposed to resolve the problem
of the dual role of address as an identifier and as a locator.

 44

CETP collaborates with a CES device to isolate a customer network from the core network
in terms of technology choices and routing protocols. To facilitate multi-homing and use of
parallel technologies in the global Internet, the protocol transports a number of addresses
on the public network called RLOCs. The RLOC types differ depending on the forwarding
technologies used over the core network. These addresses can be also sorted based on
preference and order values.

If a host can run CETP, RLOC spoofing becomes possible. This can be corrected by
agreeing on a network engineering principle that CETP is always carried over a different
VLAN in the core network than the plain IP traffic. If this is done, Inbound CES (iCES)
can be sure that no host can spoof the source RLOC.

If a CES is compromised and spoofs its RLOC, this can be detected by iCES and the
destination host will not be disturbed. The condition is that iCES applies a suitable policy.
The same methods that now apply to tracing address spoofing apply to this case. In this
case evidence cannot easily be attributed to the compromised CES.

Due to eliminating the possibility of RLOC spoofing by the sender, a CES can always
attribute evidence of misbehavior of a host to the source customer network.

To reduce the chance of ID and address spoofing, CETP provides a range of tools for the
private networks. CETP places the responsibility of using those tools to the receiver’s
network. This remarkably enhances trust between two corporate or customer networks
involved in a communication. Furthermore, the protocol enables a CES node to define and
apply various policies for each ongoing session. A policy describes the recipient’s
expectations (e.g. required ID type, etc.) from the sender. In other words, CETP allows the
inbound edge to specify which ID types must be used to identify a remote host, whether
protection against source address spoofing is required, whether the CETP control signaling
needs to be signed to ensure non-repudiation and also whether the integrity of edge-to-edge
communication has to be preserved by encryption or not.

The protocol facilitates host IP trace back, assurance of RLOCs and IDs of involved hosts
and return routability checks on either naming or forwarding level. This provides non-
repudiation of communication and trust enhancement between two communicating
customer networks. In addition, a trust domain administration using those tools can more
easily locate malicious senders and attackers.

 45

An idea of CETP is to create a shift in the basic communication paradigm used in the
Internet. The Best Effort paradigm in which the network puts its best effort to deliver
sender’s packets to the destination is by far the most popular communication model. The
Publish/Subscribe is another paradigm for communication. In this model, none of the
published messages would be available for the receiver unless it subscribes to the content
beforehand. CETP moves towards the Best Effort Communications (BEC) that is a
synthesis between the classical Best Effort and Publish / Subscribe approach. In the BEC
model, the network should make its best effort to serve both the sender and the receiver
and thus balance their interests in the context of communication. To achieve this goal, the
subscription in the Publish / Subscribe solution is replaced by the policy in the BEC. This
helps to limit the packet admission based on the receiver’s consent. The interest of the
receiver means that the recipient only admits packet flows that it wants and are dropped the
rest. [25]

The protocol only operates between two CES nodes; therefore the entities residing in the
access and customer networks are not required to be aware of CETP. Furthermore, CETP
provides the Trust incident reporting for other ITF components that support the concepts of
reputation and trust for each Internet entity. [51]

In CETP, all control information and also IDs are encoded in a TLV (type, length, value)
format. Using the TLV data formatting addresses flexibility and future expandability.
Hence, the protocol facilitates implementing extensions.

As an additional feature, CETP together with the server side PRGW improves the
procedures that delay the extinction of IP address space for the mobile devices and objects
in the Internet of Things. As a number of wireless user devices continues to rise, the
protocol would relieve the IPv4 address space shortage.

5.2 Requirements

Within this thesis work, three models for carrying CETP are defined. In the first model,
CETP is defined as a new Ethertype and then transported in an Ethernet frame over the
core network. It is also feasible to define a new well known port for the CETP. To be
exact, in this case, CETP models as a new protocol on top of UDP. Moreover, CETP can
be directly carried over an IPv4 core network as a new transport protocol like SCTP or
TCP.

 46

To make CETP operational, a DNS server must be able to encode a wide variety of ID
types in existing resource records (e.g. NAPTR record). Furthermore, a CES needs to
process CETP packet flows in addition to other types of packets.

5.3 CETP Packet Structure
The protocol definition given in this thesis is the second iteration that emerged as the result
of our prototyping and verification work. As illustrated in Figure 5.1, the CETP packet
structure consists of two separate parts: the CETP header and payload. The CETP header is
also divided into the compulsory control header and the optional control TLVs. The
compulsory control header contains a fixed size segment and two variable length fields for
the sender and destination IDs. Additionally, there is a flag in the compulsory control
header that specifies whether the optional part of the header carries any TLV fields or not.
The control TLVs are mainly used for the edge-to-edge signaling that is usually exploited
by the inbound edge to decide about the packet admission.

 Figure 5.1: CETP packet structure

On the other hand, the data packet received from a private host is encapsulated into the
payload field. This field always starts at a 32-bit boundary. A CETP packet containing a
control TLV may have a non-empty payload field. In contrast, if there is no control TLVs
within the CETP header, a payload must be present in the packet.

5.4 Protocol Compulsory Control Header

The CETP compulsory control header structure is shown in Figure 5.2. The compulsory
control header is made of several fields including Version, Flags (C, R), Header Length,
Payload Length, Source ID, and Target ID. The Version field indicates the protocol
version. The Flags parameter consists of two bits: the C and R bits. If the CETP message
includes at least one control TLV, the C bit must be set to one. On the contrary, the C bit
would be zero when the CETP packet only contains a payload. The second bit, R bit, is
reserved for future use.

 Figure 5.2: Protocol header

 47

Due to the flexible size of the ID fields, the CETP compulsory control header length is
variable. Therefore, the Header Length (HL) parameter is defined to specify the header
length in octets. HL includes the length of the fixed part of header, the source ID, the target
ID and the optional control TLVs. The total length of the CETP control header cannot
exceed 2048 octets as HL is limited 11 bits. To be exact, HL is calculated from the
following formula:

𝐻𝐿 = 𝛴 (3 + 𝐿𝑒𝑛𝑔𝑡ℎ − 𝑖𝑛 − 𝑇𝐿𝑉 + 𝑇𝐿𝑉 𝑝𝑎𝑑𝑑𝑖𝑛𝑔) + 8 + 𝑆𝑖𝑑𝐿 + 𝑇𝑖𝑑𝐿
+ (𝑛𝑟𝑜𝑓 𝑇𝐿𝑉𝑠 > 127) 𝑎𝑙𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑇𝐿𝑉𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑚 (1)

In the CETP packet, the payload size is given in the Payload Length field in octets.

5.4.1 Identity Encoding

The source ID and the target ID are defined via three parts: type, length, and the actual
identity value. Due to this structure, the ID can have variable length, flexible format and
various types. The type parameter, which is called SidT for the source ID type and TidT
for the target ID type, indicates the ID generation algorithm used by the ID server. For
example, IDs can be random values that a CES generates using internal algorithms.
Furthermore, CETP by means of mobile operator infrastructure can use globally unique
mobile operator assured IDs for end-to-end communication. Mobile Operator assured IDs
can be, for example, MSISDN numbers, IMSI numbers and user certificates that can be
verified by HSS/HLR. Unlike end-to-end protocols that identify the end hosts with the
same assured IDs, CETP protects a mobile target device against the DDoS attacks and
unwanted initial packets that are not carrying the assured source ID type.

The size of ID value is determined in the Length field which is called SidL for the source
ID length and TidL for the target ID length in the protocol header. The ID itself fits into
the value part. There is no limitation on the ID formatting in the current CETP
specification.

In the first prototype of CETP, the source and the destination IDs were encoded in a
similar way to the control TLVs, although in the current specification they are formatted as
described above to facilitate packet processing.

5.4.2 Control TLV Format

It is feasible to separate the control information section from the payload within the CETP
message structure. The control signaling contains one or more control TLVs and signals

 48

control information between two communicating CES nodes residing at the edges of the
trust domains. The control TLV format is depicted in Figure 5.3.

 Figure 5.3: Control TLV format

The control TLV includes three segments: type, length and value. The type field occupies
two bytes and is represented as follows: 5-bits for flags, 2-bits for group, 7-bits for TLV
code and a 2-bit operation. The group specifies the high-level type of control TLV,
whereas the code is more detailed and determines the type of TLV element in the group.
Table 5.1 presents four control TLV groups.

Bits (GG) Control TLV group

 00 ID types

 01 Payload types

 10 RLOC types

 11 Control information types

 Table 5.1: Different control TLV groups

Appendix A presents TLV mnemonics for all existing control information. There are four
possible operations including Query, Response, Reliable Response and Acknowledgement
which are defined by means of the operation bits (Q and R bits). In a TLV query, a sender
asks for a responder’s value for a certain TLV type and then waits for a reply. The
response TLV contains the answer (i.e. sender’s value) to the previous query. In this case,
the responder does not expect an acknowledgement TLV. In contrast to this, the reliable
response that carries the same information as the response TLV requires an
acknowledgement leading to a 3-way handshake edge-to-edge. So, query, response and
reliable response always carry the sender’s value. The acknowledgement may or may not
carry the receiver’s value. Table 5.2 lists all possible operations. [34]

 49

Flags(QR) Operation Description

 00 Query TLV query that can also carry sender’s value and
sender expects a response.

 01 Response TLV response provides sender’s value; in this case
ACK TLV is not expected.

 10 Reliable Response Sender expects an ACK TLV from the destination.
Besides, TLV includes a sender’s value.

 11 Acknowledgement ACK TLV is sent as an acknowledgement to pervious
reliable response TLV. It may carry the receiver’s
value

 Table 5.2: Possible operations for control TLVs

Moreover, the type field has compatibility bits (named I and D bits) that specify how an
unknown or an unsupported TLV type should be processed. To give an example, if both
the I and D bits are set to zero; the sender asks the receiver to ignore the TLV if its type is
not understood. Table 5.3 presents a different combination of compatibility bits. The flags
also contain the extension bits reserved for future use.

Flags(ID) Description

 00 If type not understood, sender tells the receiver to ignore the TLV.

 01 If type not understood, sender tells the receiver to ignore the TLV and send
a Backoff code in response.

 10 If type not understood, sender tells the receiver to delete all control TLVs in
the message.

 11 If type not understood, sender tells the receiver to delete all control TLVs in
the message and send a Backoff code in response.

 Table 5.3: List of combinations of compatibility bits

The length field size varies between one and two octets based on the value of the first bit.
To be exact, if the first bit is set to zero, the length field occupies one byte while its size
extends to two bytes in a case that the value of the first bit is one. This is done to optimize

 50

the CETP message size as one octet length field is usually sufficient for specifying the
value length.

 Figure 5.4: Length encoding for TLVs and IDs
L = 0 -> 7-bit length (0-127), L = 1 -> 11-bit length (0-2047)

The value is defined depending on the TLV type. The TLV type numbering space
comprises ID types, payload encapsulations, reachability information, and signaling
information. The type number space is common between the control signaling and payload.
As a consequence, it is feasible to address specific information between the planes. It is
noteworthy to mention, a TLV always is padded up to a 32-bit word boundary, however,
the padding is not counted in the length field.

5.5 CETP Control Signaling

In this section, the format of control TLVs is defined according to the latest CETP
specification.

5.5.1 RLOC TLV

The location of the source or the destination CES device is determined by the RLOCs.
More specifically, an RLOC is a globally unique address of a given type. Each RLOC
identifies the route to a CES node. The type specifies one of three currently defined RLOC
types: IPv4 addresses, IPv6 addresses, and MAC addresses. In the RLOC TLV, the 2-octet
length field encoding is chosen to keep the alignment of the rest with 32-bit boundary. The
length is equal to the number of RLOCs multiplied by the size of each RLOC of a given
type.

 Figure 5.5: RLOC TLV format

 51

As shown in Figure 5.5, each RLOC has a preference and order. The RLOCs are ordered
based on the priority (i.e. combination of order and preference). As a result, the load can be
distributed between several CES interfaces in a similar way as when order and preference
appear in DNS address records.

The outbound CES obtains a set of inbound CES RLOCs and their default states from the
DNS response, while the inbound CES needs to use CETP in order to learn alternative
RLOCs for the outbound CES. For a legitimate packet flow, the reachability information
transported by CETP should match the reachability information obtained from the DNS.
Furthermore, the communicating CESs can use CETP to monitor and notify changes in the
reachability information during a session. This can be used to split the load effectively,
support multi-homing and to report unavailable RLOCs. The pace of monitoring is
specified by the timeout of connection state.

If an inbound edge wants to use different RLOCs from the default ones stored in the DNS,
the current state of RLOCs must be announced to the outbound edge by using the CETP
RLOC TLV. Additionally, if an ongoing session does not meet the admission requirements
of the inbound edge, the CES drops all queries originated from that source to eliminate
network scanning. Depending on the policy, a CES may admit data flows from all
alternative outbound edge RLOCs.

When a CES receives a CETP packet containing the sender’s RLOC TLV with 0xFE
preference value, it should switch to a new remote CES RLOC and update the current state
of the destination RLOC instantly. Upon an RLOC switchover request, CES has to start
admitting packets from a new RLOC. Admitting packets for an ongoing session on an
alternative destination RLOC may be limited to a certain time period in order to make the
DDOS attacks less likely. The state mirroring from an active CES to a standby CES is
necessary when a hot swap of a session takes place. If the RLOC to RLOC delays vary
substantially, a hot swap operation becomes complex. To avoid the performance penalty
resulting from the state mirroring, the session hot swap may be only applied to the crucial
and long term flows.

5.5.2 Timeout of the Customer Edge State

In CETP, the timeout TLV specifies how long the state of communication can be valid.
This value will be restarted upon the reception of a message with the same source ID. The
purpose of the TOUT TLV is to carry the desired timeout of sender’s state information

 52

during the negotiation phase. The timeout value is given in seconds. Figure 5.6 draws the
Timeout TLV format.

 Figure 5.6: Timeout TLV structure

In addition, an edge node can notify the peer about the removal of outdated state
information or ID revocation by mean of TOUT TLV with a zero value.

5.5.3 Cookie TLV

Cookie TLV encoding, which is illustrated in Figure 5.7, has the same format as other
control TLVs. CETP defines the Cookie control TLV for implementing forwarding
protocol level return routability check.

 Figure 5.7: Cookie TLV formatting

To be exact, upon the first packet of a new flow, the inbound CES does not need to create a

connection state. This is for reducing the chance of address spoofing. Instead, it can

postpone the state creation to the next message, sending back a response message with a

cookie TLV. If the source RLOC has not been spoofed, the outbound edge will respond

with the same cookie. Once the inbound edge receives the next message with the same

cookie and thus ensures that the source RLOC is genuine, it admits the traffic and creates

an appropriate mapping state. In the Cookie TLV, the actual cookie is accommodated in

the value field while the length specifies the cookie size in octets.

5.5.4 New ID Type Query and CA Address TLV

As a result of encoding the ID in the TLV format, both the source and the destination IDs
can have different types, variable length and flexible format. CETP allows the edge node to
tell what kind of ID is required to be used as the remote host identifier. Therefore, if an
inbound edge receives a message with the source ID type which is different from the
expected type, it creates a TLV query for the desired ID type and sends it back to the

 53

outbound edge. Upon the reception of a New ID type TLV query, if the sender supports the
required ID type, the outbound edge replies with a message carrying the queried source ID.

The ID TLV has a similar format to other control information. It belongs to the ID types
group and its TLV-code is initialized by the required ID type for the sender identity while
the value field in this TLV is always empty.

In some cases, the new ID type query and the CA address query are sent together because
the inbound CES requires the validity assurance of the new source ID. However, if the new
ID is assured by a trusted third party, CA address TLV query is not needed. The value of
the CA address TLV gives the address (e.g. HSS address) that can be used for executing
assurance queries.

5.5.5 Domain Information

The domain information TLV falls into the control TLV group and its value carries the
sender’s domain name. In the current version of CETP definition, there are two main
usages for the domain information TLV: (1) replying to a reverse DNS query, and (2)
performing a return routability check on naming level.

 Figure 5.8: Example of reverse DNS query

In the first usage, as shown in Figure 5.8, once an edge node receives a PTR query from a
local host, it forges a domain TLV query and forwards it to the peer. If the remote edge
finds the FQDN corresponding to the queried ID, it will return a domain TLV response
containing the host domain name to the sender edge. If the ID is matched to multiple
FQDNs and also the responder edge wants to provide all, each FQDN must be sent in a
separate TLV. On the other hand, if no FQDN related to the queried ID is found, the
responder edge may reply with the empty domain TLV. Upon reception of the response,
the edge node generates a relevant PTR reply using the received FQDN and forwards it to
the querier.

 54

For performing a naming level return routability check, an inbound edge follows a similar
query/response procedure as in the reverse DNS lookup. The only difference is that the
inbound CES performs a DNS lookup for the received FQDN. The return routability check
procedure will be discussed in more detail later.

5.5.6 Signing CETP Header

The signature TLV is particularly defined to carry a signed CETP header including RLOC
TLVs. The purpose of the signature is to prove the integrity of the protocol header and the
origin of data while transporting across different trust domains. This implies protection
against identity theft and man-in-the-middle modification of information. To support the
signature mechanism, the responder CES needs to have its own identity. It also requires a
registration in a certificate authority (e.g. HSS). Furthermore, the signature must appear
after all other TLVs as it includes a signed full CETP header (both mandatory header and
optional control TLVs).

5.5.7 Reporting Unexpected Messages

If an inbound edge receives an unexpected CETP message from a specific sender, it starts
counting these messages. Once the inbound CES receives a given number, N of unexpected
response messages, the CES deduces that the destination is a victim of a reflector attack
and it reports the incident to the remote CES by sending a CETP message containing the
reporting unexpected message TLV. The fact that N is chosen as a limit for the number of
received unexpected messages prevents the amplification effect. As indicated in Figure 5.9,
in the control TLV designed for the aforementioned reason, the length is set to M because
the value carries the first M bytes of an unexpected message.

 Figure 5.9: Unexpected message report TLV

This TLV is used to report that iCES suspects that it is a victim of a reflector attack and that the peer is being
used as a reflector.

On the outbound edge, upon receiving the TLV, the reflector should tighten the policy for
the incoming flows. For example, CES can eliminate the source address spoofing by
executing naming and forwarding level return routability checks.

 55

5.5.8 Backoff TLV

There are some error situations in which termination of the connection is required. CETP
facilitates reporting such conditions by two separate Backoff code TLVs. The first type of
Backoff codes relates to the error conditions associated with communicating CES devices
and local parties. A congested CES, unavailable destination host and unknown connection
are examples of such problems. Each of these problems is identified by a specific error
code in the value field. The unrecognized TLV types including unknown and unsupported
TLV types are reported by another type of Backoff codes. In this case, the value contains
the unrecognized TLV in addition to the relevant error code. The unknown TLV error code
is defined for the backwards compatibility with the future definitions of CETP, while the
unsupported TLV error code indicates a strict policy or absence of some resources.

5.6 Reporting Unwanted Traffic and Malware

CETP does not support reporting malware and unauthorized traffic. Instead, other elements
of ITF provide such reporting. There are two main reasons behind this design decision.
First, detecting unwanted traffic and malware is a time consuming process and needs
deeper packet inspection; therefore it is possible that the connection has been terminated
before completing detection operation. Moreover, such reporting can be seen as a source of
numerous security weaknesses such as badmouthing innocent hosts. So, we assume that
instead of reporting evidence of misbehavior directly to the sender that may be
compromised by a Trojan, the evidence should be aggregated and validated first by a trust
management system. It will then be up-to the trust management systems to take action
against the misbehaving host.

5.7 Payload in CETP

In the current version, the payload CETP uses two types of encapsulations: a minimal
encapsulation of IPv4 payload and an Ethernet frame for a tunneled raw IPv4, IPv6 or
other packets. In the payload part, the type contains the group bits and the payload TLV-
code but no other flags. Thus, a negotiation for the payload encapsulation type must be
performed by control TLVs. The control TLVs used for this purpose have a similar format
to other control information and the control TLV-code is always set to sender’s preferred
payload type. It is important to notice that TLV’s value in these signaling information does
not offer any additional information to the peer. In other words, it is always empty.

 56

5.7.1 Header Compression for IPv4 Payload

This encapsulation type resembles RFC-2004 (i.e. Minimal Encapsulation within IP) and is
used in the case of IPv4 core network. The basic idea of Minimal Encapsulation is to
reduce the header overhead resulting from tunneling. Since the destination IP address is
derived from the mapping information with the help of the destination ID, this field is not
present in the compressed IPv4 header. Figure 5.10 illustrates the IPv4 header compression
format. Upon reception of a payload with IPv4 encapsulation at iCES, the IP header
parameters are generated as follow:
Version = 4, IHL =20, Type of service – based on the local policy, Total length = Payload length +
16, Fragmentation cannot be supported, TTL = core IP TTL – 1, Protocol = copied from the
original IP packet, Header Checksum – calculated locally, Source IP address: allocated by CES
locally, Destination IP address – mapped by CES based on the connection state

 Figure 5.10: IPv4 header compression format

5.7.2 Ethernet Encapsulation for any Payload Protocol

CETP can carry any payload protocols that are transported on top of Ethernet. To achieve
this goal, a new Ethertype for CETP is required. This encapsulation may be used to
generate nested CETP messages. In other words, a CETP packet may contain another
CETP message within its Ethernet payload. The structure of Ethernet payload is presented
in Figure 5.11.

 Figure 5.11: Ethernet encapsulation structure

The Ethernet encapsulation provides means for CETP to support fragmentation. Currently,
the CETP header does not have any fragmentation fields. Instead, it handles packet
fragmentation by switching between the payload types without adding the overhead of two
byte fragmentation field in the header. More precisely, when the length of the data packet
originated from a private host exceeds the MTU threshold and the DF bit is off, the CES
fragments the packet into smaller portions and puts each segment into a CETP Ethernet
payload. The experience of CETP usage will tell whether this kind of support for

 57

fragmentation will be enough or a new payload format that would support fragmentation
will be needed after all.

5.8 Security Mechanisms Implemeneted with CETP

In the Customer Edge Switching architecture, a CES makes the decision whether the
incoming packet is legitimate and should be delivered to the destination host or not. The
main result of this mechanism is establishing trusted communication between two
endpoints. To achieve this level of trust, CETP offers a range of tools and procedures to
CES devices. Some of these security mechanisms are listed in Table 5.4 and described in
the following subsections.

Security Threat Counter measurement implemented with CETP

ID theft Signature, executing assurance query via CA address TLV

Eavesdropping,
Man in the middle attack,
Data modification,

Signature

IP(ID) spoofing,
spamming, SYN flooding

Return routability check on naming and forwarding level

DDoS attack Reporting attack via reporting unexpected message TLV

 Table 5.4: Trust mechanisms of CETP

5.8.1 Return Routability Checks

Most of the protocols used across the Internet do not require authentication and
confirmation of identity from senders. A malicious sender takes advantage of this breach;
uses a spoofed address as its routing address and bombards the destination with
unauthorized packets. Consequently, the receiver’s resources are exhausted quickly and
legitimate packets cannot be processed by the receiver.

CETP offers Return routability checks on naming and forwarding level as an effective
procedure to detect packets with the spoofed source address or ID. In this approach, the
receiver edge before accepting communication, checks whether the sender is accessible at
the claimed address or not. CETP exploits control TLVs including cookie and FQDN to
implement the return routability check mechanism.

 58

When an inbound CES receives a first packet of a new flow, it may perform return
routability check either on naming or on forwarding level. For performing naming level
return routability check, the inbound edge requests the domain name of the initiator with
the domain information TLV query and gets the sender’s FQDN in the TLV response.
After that, the inbound CES performs a DNS lookup for the received FQDN and retrieves
all outbound edge’s RLOCs. Then, it examines whether the sender routing information in
incoming packets matches to one of the RLOCs derived from the DNS response. The
described scenario is drawn in Figure 5.12.

 Figure 5.12: Example of return routability check on naming level

The cookie mechanism in CETP can be seen as one way of performing a return routability

check on forwarding level. We borrow the cookie mechanism from SCTP that supports the

cookie mechanism. In TCP it is possible to use light weight cookie mechanism; the

receiver may drop the first SYN and generate a special 32 ISN (initial sequence number).

When the receiver gets an ACK with a valid ISN it can create session state. Host

implementations of TCP cannot interoperate with this technique, so the outbound and

inbound CES will have to hide its use from hosts.

Figure 5.13: Example of forwarding level return routability check

 59

In this approach, as shown in Figure 5.13, the querying edge sends a cookie TLV with the
reliable response operation (QR=10) towards the outbound CES and then in the next
message from the remote edge it expects to receive an acknowledgement TLV (QR=11)
containing the same cookie.

5.8.2 State Management

Upon reception of a new legitimate flow, the inbound edge creates a connection state. Each
communication state depending on its timeout can be active for a specific period of time.
The state’s timeout will be restarted once CES receives any packet with the ID stored in
the state. On the other hand, the state entry will be removed if no relevant packets are
received within the timeout.

Removal of outdated state information is signaled and synchronized between CES devices.
In other words, when the timeout of state information expires, the CES deletes the state,
informing the peer about the state expiry and requests the removal of the corresponding
connection state by sending a timeout TLV with a zero value. The remote edge removes
the corresponding mapping state upon the notification message and if it is still interested in
continuing communication, it has to perform a DNS lookup and establish connection again.
The edge node should also consider that the destination ID may have been changed after
the connection abortion. Typically, the local host is informed about the removal of
connection state.

5.8.3 ID Management

Due to the flexible format of IDs in CETP packets, two endpoints can negotiate about the
types of ID that must be used by the other end. To perform an ID negotiation, an edge node
creates a TLV query for the required ID type and directs it to the peer. On the other end, if
the queried ID type is supported by the sender, the next message is built with the requested
source ID. Upon the first message with a new ID, if all other requirements are also met by
the remote edge node, the inbound edge creates a new connection state and delivers the
data packet to the destination host. In the described scenario, using a cookie TLV for return
routability check and CA address TLV for assurance queries are optional. The example of
a new ID type query at the beginning of a new flow is illustrated in Figure 5.14.

 60

Figure 5.14: Changing ID type example

In addition, an ID can be revoked for example if an identity theft has been detected by a
trust domain. For the ID revocation, a CES in a similar way to the removal of outdated
state information will send timeout control information with a zero value to the remote
end.

5.8.4 Signature

A plain text return routability check that is used for detection of source RLOC spoofing
cannot disclose a stolen RLOC from a compromised ISP network. In other words, when an
inbound edge uses the plain text routing addresses of a sender e.g. RLOCs for return
routability checks, hijacking of RLOCs is still possible in compromised networks. This
security weakness can be a target of several attacks. To avoid such incidents and attacks,
the RLOC TLVs can be signed cryptographically.

5.8.5 Reporting Attacks

Upon attack detection, the trust domain can report the problem to the concerned party if the
party is unlikely to be compromised. Let us consider a reflector attack as an example. To
launch a reflector attack, a type of DDoS attack, an attacker takes control of a host in order
to send legitimate queries towards the reflector’s address. The hosts that are not
compromised and send messages to the victim are known as reflectors. The compromised
host accomplishes this by spoofing the victim’s address as the source address into
legitimate packets that it sends to the reflectors. The reflector only replies to messages with
the spoofed IP-address of the victim according to protocol principles. An example is
sending DNS queries with spoofed source addresses to the reflector. To counter this, an
inbound edge may report the unexpected messages to the reflector. However, it does not
make sense to report anything to an attacker that is under the control of a Trojan. Upon

 61

reception of the unexpected message report, the reflector should tighten the policy for
incoming flows. For example, the outbound CES can counter source address spoofing by
executing naming and forwarding levels return routability checks.

5.8.6 Policy Control of CETP

On an inbound edge, a customer network can decide whether the incoming packet is
eligible or not. To be exact, the trust domain requires certain information from the remote
edge before admitting a new flow. These requirements are defined in a policy. A policy
specifically defines the information that can be offered to the peer, the required source ID
type, the required checks that need to be applied before establishing a connection and the
state information that must be maintained for the duration of the session.

In most cases, a network administrator controls such admission policies in a similar way to
the current firewall policies. However, it is desired that the policy associated with flows
from / to a specific end user can also be managed by the end system. Controlling policy by
end devices has its own security challenges and problems. Furthermore, the packet
admission rules can be changed dynamically as a function of hostile activity using the
information about suspected or detected attacks or according to the trustworthiness of the
source and the destination ID.

Since the focus of CETP is on receiver’s interest, it leaves to the inbound edge node to
control packet admission. An admission policy can be controlled at least in two modes: lax
and strict. In the strict mode, the inbound CES would usually reply minimally to the
outbound edge queries and also does not deliver data packets destined to the private host
before the peer responds to all its requirements. Compared to strict packet admission, the
inbound edge with a lax policy offers more information to the initiator edge and forwards
the packet to the target end device even before successful negotiation. An example of
successful flow with the lax and the strict admission policy are given in Figure 5.15.

 62

 Figure 5.15: Example of successful flow with the lax and the strict admission policy

 63

6 Principles of CETP Policy Processing

This chapter is dedicated to describing the CETP policy management framework. The
chapter first explains the different components that are developed for policy control of
CETP. Later in this chapter, some of the algorithms used for enforcing principles of CETP
policy processing are examined in more details.

6.1 Policy Control of CETP

A CES can apply a wide range of policies to a data flow depending on the role of the CES
(i.e. inbound or outbound), the source and destination ID types, destination port number
and desired strength. The strength parameter enables the CES to apply more strict policy
when the respective network is under attack or the peer endpoint is recognized suspicious
based on the information gathered about suspected or detected attack attempts. However,
in this prototype, the policy initialization is simplified and the policy for each new
connection is initialized only according to the role of CES. More precisely, each host in the
private network has separate admission policies for incoming and outgoing connections.
Thus, upon reception of a flow associated to the host, a CES enforces the policy
corresponding to that host considering the direction of the connection. Each control TLV
belongs to its own interaction. CETP allows many types of interactions such as query –
 response, response, query - reliable-response – acknowledgement and reliable-response -
 acknowledgement. Table 6.1 lists different types of interactions.

 Interaction Description

Query - Response With this interaction a sender asks for a control TLV and a
responder replies to the query.

Response With this interaction a sender offers its control TLV.

Reliable-response - Acknowledgement With this interaction a sender offers its control TLV and in
response a receiver has to send an acknowledgement upon
reception of the TLV.

Query – Reliable-response –
Acknowledgement

With this interaction a 3-way handshake for edge-to-edge
signaling is implemented. A sender asks for a control TLV
and a responder replies to that query. At the end, a sender
has to acknowledge reception of the TLV.

Table 6.1: Different types of interactions

 64

In addition, the communicating peer nodes must follow a set of principles (named policy
constraints) so that their policies can be matched and they can communicate with each
other. In other words, policy constraints define rules that limit the acceptable and feasible
policies of involved parties. Some of policy constraints that the prototype takes into
account during policy processing are:

• Since the policy control of CETP focuses on fulfilling the receiver’s needs rather
the sender’s requirement, an inbound CES does not reply to the sender’s queries
before its own requirements are met by the outbound CES. Thus, if the sender
cannot continue conversing with the peer before accessing certain control
information of the receiver, it must repeat its demands in a following message.

• Each edge node must access to at least one RLOC type of the common RLOC types
determined by the peer.

• The peers must support a common payload encapsulation.

The policy control of CETP is implemented through three classes: PolicyEngine, Policy
and FSM (Finite State Machine).

6.2 Policy Class

Each policy is determined using a number of policy vectors. Each policy vector defines an
aspect of policy for one or more TLV types. In other words, it specifies how each TLV
type should be handled and processed. In this class, a policy is defined by the following
policy vectors:
Role- It is assumed that the policies that the CES applies to incoming flows are different
from the ones associated with outgoing connections. Hence, this vector specifies the role of
the CES enforcing that policy.
ID-Reqc- This field defines what kinds of ID types identifying the peer host are acceptable
from the perspective of the private host.
Reqc- This vector identifies certain control information (e.g. FQDN) that a home CES
requires from the peer edge before admitting a new flow.
RR-Reqc- This vector includes TLV types that a CES offers and requires a reliable
response operation and thereby expects to receive an acknowledgement from the peer.
Offerc- This vector defines TLV types that CES can offer or solicit to the peer particularly
at the beginning of a session.
Available- This field indicates TLV types that are allowed to be offered to the peer upon
requests.

 65

As described before, policies are processed differently on inbound and outbound edges. To
calculate acceptable policies, we focus on the negotiation phase prior to connection
establishment. On an outbound edge, a sender host can be identified with the four ID types
(Random, FQDN, MOC and MAID) and also can decide whether to provide a required ID
type for the peer (6 choices). An outbound CES can reply to control TLV queries in five
different ways: ignoring a query, sending a Backoff code with the response or reliable
response interaction, providing its information with the response or reliable response
interaction. For offering each control information, both outbound and inbound CESs have
five options: not offering, offering its control information with response or reliable
response, querying a TLV type with or without soliciting its own information. A receiver
same as a sender can be identified with the four ID types and also can ask from a sender to
change its ID (54 choices). With the current CETP specification (including eleven control
TLV types), the number of possible policies is calculated as follows:
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑂𝑢𝑡𝑏𝑜𝑢𝑛𝑑𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠 2,29𝐸 + 15 = (𝐼𝐷 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 24) ∗ (𝑜𝑓𝑓𝑒𝑟 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 510) ∗
(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 510)(1) 𝐴𝑛 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 𝐶𝐸𝑆 𝑐𝑎𝑛𝑛𝑜𝑡 𝑠𝑒𝑛𝑑 𝑎 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑤𝑖𝑡ℎ 𝑖𝑡𝑠 𝑐𝑜𝑜𝑘𝑖𝑒.

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐼𝑛𝑏𝑜𝑢𝑛𝑑𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠 1,13𝐸 + 09 = (𝐼𝐷 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 58) ∗ (𝑜𝑓𝑓𝑒𝑟 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 510 ∗
2) ∗ (response policies 1) (2) 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑜𝑘𝑖𝑒 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑞𝑢𝑒𝑟𝑦 𝑜𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒.

6.3 FSM Class

Upon reception of the first packet of a new flow, a CES usually creates one instance of
FSM for that connection. This object holds the current state of the ongoing session, the
policy associated with the connection, previously sent TLVs towards the peer CES, list of
control TLVs received from the sender edge and pending TLVs that should be returned to
the peer as soon as the data packet is received from the local host. Furthermore, each FSM
has several timeout parameters though they are not implemented in this thesis and were left
for future implementation. Table 6.2 lists all timeouts that are defined in the FSM class.

 Timeout Description
 timeout_p oCES timeout for pending state.

 timeout_on oCES timeout for ongoing state.

 timeout_CA oCES/iCES timeout for CA response.

 timeout_ka keep_alive interval of CES whose timeout is longer.

 Table 6.2: List of FSM timeouts and their description

 66

6.4 Policy Engine Class

This class plays the main role in controlling the policy of CETP flows. When the CES
prototype receives a packet, it examines whether the packet is to/from a legacy host or
to/from a host behind another CES node. Moreover, each ongoing session may go from
one phase to another occasionally. If the packet is related to CES-to-CES communication,
the respective method in the policy engine class is invoked.

CES-to-CES
communication

received by policy
engine

Initiating a new
flow

Receiving a
new flow
attemp

Pending
session

Create_oFSM Create_iFSM Process_pending_
state

Return Packet

Ongoing
session

Process_ongoing_
state

Yes

Yes Yes

NoNo No

Yes Yes

 Figure 6.1: Policy engine Algorithms

Figure 6.1 shows how the policy engine behaves in the differing phases. On the outbound
edge, the CES must initiate a flow upon a request from a local host while an inbound edge
has to process flow arrivals. The state of the session is set to pending when the home CES
cannot guarantee that the peer would respond to the sent message or not. Once the
outbound edge responds to all queries sent by the inbound CES and thereby fulfills all
destination hosts’ needs, the inbound session goes to the ongoing state. Upon reception of
TOUT TLV with zero value, the state of the incoming or outgoing session changes to idle.
In addition, if the CES receives a query for changing the ID type of the local host, it sets
the state of the corresponding session to pending. It is noteworthy to mention that an
outgoing session will go to the ongoing state even if inbound CES does not fulfill its
requirements. The reason is that we assume that the connection is established based on
receiver’s interests rather than sender’s consent. Figure 6.2 illustrates the finite state
machine of the policy engine.

Idle Ongoing

Successful Flow Arrival

Receive TOUT = 0 and
delete mapping state

pending Receive new ID
 typ

e queryReceive TOUT = 0 and delete

mapping state All re
quirements fu

lfille
d

Initiate Flow

 Figure 6.2: Finite state machine of policy engine

 67

In this thesis, the DNS lookup for CES-to-CES communication is performed in a similar
way to the first version of the prototype. The only difference is that when the prototype
receives the DNS reply from the authoritative server, unlike the original prototype, it does
not forward the message to the initiator local host. Instead, it buffers the DNS message and
further starts negotiating with the peer edge. If the inbound edge verifies the legitimacy of
the sender host and the connection is set up between the two edges, the outbound CES
returns the DNS reply to the corresponding private host. After that, the host begins
dispatching data packets towards the destination. This model is named postponing DNS
message. The clear advantage of this model is that it avoids the need for buffering packets
during the negotiation phase. This procedure is effective especially when the size of data
packets sent by a local host is large (e.g. Video frames) and buffering packets would
require a large amount of memory. Since the inbound edge does not deliver data packets to
the destination host before the negotiation is completed successfully, an outbound edge
would have to store data flows from private hosts during the negotiation phase, otherwise
they would be dropped by the peer edge and negotiation as promised in the protocol could
not be transparent to end points anymore.

Before implementing the postponing DNS message model, in an early version of the
prototype, a DNS reply was forwarded to a querier preceding the negotiation phase. For
avoiding problems that emerged due to buffering data packets, we decided to implement
the postponing DNS message model rather than the original procedure.

In the initialization phase, the CES prototype derives the information related to each
private host including its identifier and policy number pointing to the specific admission
policy from the configuration file. This file also presents the list of policies with arbitrary
policy vectors. The prototype stores these policies using policy class objects. Each packet
admission policy has a unique number and a private host based on its policy number is
linked to a certain policy. Furthermore, as described before, this prototype does not use the
public key infrastructure. Instead, the peer CES’s certificate and home CES’s private key
are given in the setting file.

6.5 Auxiliary Methods in Policy Engine Class

The policy engine uses a number of generic algorithms in addition to the methods
performing the actual policy processing. They help the policy engine with creating the full
requirements, processing and replying to the control information from the peer, creating
cookie and checking cookie. Each of these methods will be explained in detail later.

 68

6.5.1 Policy Engine Algorithm for Creating Full Requirements

At the beginning of the negotiation, each edge node depending on its policy declares the
required information from the peer within the CETP control TLVs field. The edge node
requests this control information in order to verify the validity of the peer. In this phase, it
may also offer some information about itself such as its signature to the peer. The CETP
packet whose control signaling is initialized in this way is called the full requirement. To
make such a CETP control signaling, the policy engine uses the Creating Full Requirement
algorithm. Figure 6.3 draws the process of creating a full requirement.

Create Full
Requirement

TLV type is in the
Offerc List

Retrieve Policy’s
Offerc List

There is more
TLV type in
Offerc list

TLV type is in
the RR-Req List

Return CETP
packet for
forwarding

Add TLV type
with query

operation and
sender’s value

to TLV List

Add TLV type
with query

operation and
empty value to

TLV List

Add TLV type
with reliable

response
operation and

sender’s value to
TLV list

Add TLV type
With response
operation and

sender’s value to
TLV list

Retrieve Policy’s
Reqc List

Get a new TLV
type from Reqc

List

There is more
TLV type in the

Reqc List

Get a new TLV
type from Offerc

List

Yes

No

Yes

TLV type is in
the Reqc List

Yes

No

No

YesNo

Yes

No

 Figure 6.3: Creating full requirement algorithm

This algorithm first iterates over the Reqc list of given policy and then for each TLV type
in the list determines whether it is also present in policy’s Offerc list or not. By this
procedure, the appropriate parameters for each required TLV type can be defined and
further added to the CETP TLVs list. If the TLV type in the Reqc list is also found in the
Offerc list, it means that the edge in addition to inquiry for that control information is also
willing to offer its own information in the TLV’s value field; otherwise the value part of
the TLV is empty.

After adding all required TLV types to the CETP control signaling, it comes to add the
information that is going to be solicited by the sender in the full requirement. To do this,
the TLV types in the Offerc list are retrieved one by one and checked whether they are also
in the Reqc list. If not, the algorithm examines whether the TLV type exists in the RR-
Reqc list of the policy or not. If it is found in that list, the TLV’s operation is assigned to

 69

reliable response in order to tell the peer that it expects an acknowledgment for that TLV;
otherwise the operation of the TLV is set to response. In both cases, TLV’s value field
contains the home CES information for that specific type. It is important to notice that if
the TLV type is present in both the Reqc and Offerc list, there is no need to add a separate
TLV for each query and offer operation. Instead, the policy would be applied by a single
TLV field with the query operation and the value segment carrying the sender’s value.

6.5.2 Policy Engine Algorithm for Processing Control Information

When the policy engine receives a CETP packet from the peer edge, it has to process the
control signaling and payload separately.

Process received
CETP control

plane

TLV type is
TOUT

TLV type is
FQDN

TLV type is
RLOC

TLV type is
Encapsulation

negotiation

TLV type is CA
address

return

Execute
assurance query
using CA address

No No No

Get a TLV
from the

CETP TLVs
field

There is more
TLV in the

control plane

No

Store alternative
remote edge’s

RLOCs

Store Prefered
Encapsulation type

for data plane

Value is not empty
and TLV is not

acknowledgement

Yes

Yes Yes Yes Yes

No

Yes

No

Yes

Process
TOUT

Process
Domain name

information

No

 Figure 6.4: Policy engine algorithm for processing of CETP control information

For processing control TLVs, the policy engine uses the procedure which is illustrated in
Figure 6.4. This algorithm first retrieves each control TLV of the CETP TLVs field and
checks the TLV’s value. If it is not empty and its operation is not acknowledgement, a
certain operation is invoked based on its type and operation.

If the TLV type is CA address, an assurance query may be performed using the address in
the value segment to validate the remote edge’s certificate, however, this functionality is
not implemented in this thesis work and left for future work.

Assuming the TLV type is not CA address, the algorithm checks whether the type is TOUT
or not. If yes, the Process TOUT procedure is called. This method first checks the role of
CES. If the role of CES is outbound, the TOUT value is examined. This is done because if
iCES accepts oCES TOUT, this opens vulnerability. Since the peer edge sends the TOUT
TLV with zero value to notify connection termination, thus if the value is zero, the
algorithm removes the corresponding mapping information and stops processing the

 70

remaining control TLVs. On the contrary, if the TLV’s value is not zero and is also greater
than the local timeout, the connection state’s timeout is set to this value. The described
algorithm for the TOUT processing depicts in Figure 6.5.

 Figure 6.5: Policy engine algorithm for TOUT processing

If the TLV type is neither CA address nor TOUT, the algorithm checks whether it is
domain information or not. Assuming the TLV type is FQDN, the control information is
handled by the Process Domain Information algorithm which is visualized in Figure 6.6.
The method first tests whether this domain information is received in response to the
previously sent FQDN query which was forged upon the PTR query from the local host.
This is done by checking the DNS query list that maintains all unanswered DNS queries. If
the relevant PTR query is found, the PTR reply with the received domain information is
generated and sent back to the private host. In contrast, if no PTR query matches with the
FQDN TLV, the offered domain information is used for naming level return routability
check. To do this, the algorithm executes a DNS query using the domain name and
compares the remote CES’s RLOCs obtained from the DNS reply with what the peer edge
claims as its address in the source address field. If the sender address does not match with
any RLOCs in the DNS reply, it means that the source address is spoofed and the
connection must be terminated. In the developed algorithm, it is assumed that a DNS
server always replies to the sent queries, however if any DNS responses are not received
upon queries, the algorithm goes to a deadlock state.

Figure 6.6: Policy engine algorithm for domain information processing

If the TLV type does not match with any of the previous control TLV types, the algorithm
examines whether it belongs to the RLOC TLVs category. If the answer is positive and
there is a corresponding mapping state in the connection table, each RLOC in the TLV’s
value segment is stored in the connection state as an alternative address identifying the

 71

route to the peer. The peer’s RLOCs in the connection state can be sorted based on their
preferences and orders; however, this prototype does not sort RLOCs using these priorities
as multi homing and hot switchover are not implemented and thereby there is no need to
change the destination’s RLOC during a session.

If the TLV type does not pass the RLOC type test as well as other described control
information, the algorithm checks whether it falls into the payload type negotiation TLVs
or not. If it does and the home CES supports the peer’s preferred encapsulation type, this
payload type will be used by the CES for encapsulating the future data flows.

6.5.3 Policy Engine Algorithm for Signature Verification

The policy engine invokes the Signature Verification algorithm in order to check the
legitimacy of the peer’s signature. This algorithm that is presented in Figure 6.7 first
generates the MD of the CETP header in a similar way to the signature generation
operation. Then, it verifies the validity of the signature using the peer’s public key. If the
signature is not validated, it means that the CETP header is modified and signed by a third
party. As a result, to protect the customer network against MITM and DDoS attacks, the
connection would be torn up. The local edge may notify the remote edge about the
connection termination by sending a TOUT TLV with a zero value. However, this
notification message opens a way of scanning for malicious users; in the developed
prototype it is always sent upon connection terminations for debugging purposes.

Process Signature
TLV’s value

Generate MD of
CETP header by

SHA-1

Verify the MD
by peer’s
public key

Terminate connection
and notify peer with
TOUT TLV with zero

value

returnYes

No

 Figure 6.7: Policy engine algorithm for signature processing

6.5.4 Policy Engine Algorithm for Replying to Control Information

After processing the control information of the received CETP packet, the policy engine
starts making responses to each control TLV carried in the CETP control signaling.

The algorithm used in the policy engine for this purpose is shown in Figure 6.8. This
method, same as the previously described algorithm, iterates over all received TLVs in the
CETP TLV field and for each one of them builds an appropriate control TLV reply based
on the session’s policy, TLV type and operation. As the policy engine exploits separate

 72

procedures for handling the ID type negotiation process, thus the algorithm ignores
replying to the control TLVs sent for the ID negotiation.

Reply to received
CETP control

plane

TLV’s
operation is

query

TLV type is
found in the

Available list

TLV type is
found in the RR-

Reqc list

TLV type is
defined in

latest CETP
version

Return reply TLV
list

Yes Yes Yes

Get a TLV
from the

CETP TLVs
field

There is more
TLV in the

control plane

Yes

TLV type is
ID

negotiation

No

No No

No

No

TLV’s
operation is

reliable
response

Add TLV with
acknowledgement
operation to reply

TLV list

Add Backoff code
2(error code=2) to

reply TLV List

Add TLV type
With response
operation and

sender’s value to
reply TLV list

No

Yes

Add TLV type with
reliable response

operation and
sender’s value to

reply TLV list

Add Backoff
code 2 (error

code=1) to
reply TLV List

D bit in packet
header is set

Yes

I bit in packet
header is set

No

Yes

Yes

Yes

No No

 Figure 6.8: Policy engine algorithm for replying to control information

It is likely that the old versions of CETP do not know about the future modifications.
Therefore once a new feature is added into a new edition of CETP (without changing the
version number), its treatment by old editions should be specified by the ID bits that are
understood by all CETP versions. To add backward compatibility to the protocol
processing, this algorithm checks whether the TLV type according to the latest CETP
specification is known or not. If the type is unknown and the peer edge asks to be notified
about unknown TLV types via setting the D bit in the CETP header, the algorithm adds the
Backoff code 2 (and error code = 1) which is defined for this sort of error conditions to the
control TLV reply list. However, this prototype regardless of the D bit’s value returns the
Backoff error code when unknown TLV type is detected. This is done to ease tracking
negotiation messages and debugging. Assuming the TLV type is unknown and the Backoff
code is already added, the algorithm examines the value of the I bit in the packet header. If
the bit is on, the algorithm aborts the control information processing and does not provide
any replies to the received CETP control signaling. In contrast to this case (i.e. I bit is
zero), the next TLV would be derived and processing starts from the next TLV.

On the contrary, if the TLV type is recognizable based on the current CETP version, the
procedure exhibits various behaviors considering the TLV’s operation. If the operation is
query, the algorithm checks whether the home CES according to the policy’s Available list

 73

is allowed to offer the required information to the peer or not. If the answer is yes, it
examines whether the TLV type is found on the policy’s RR-Reqc list or not. If it is found
in that list, the TLV’s operation is set to reliable response; otherwise the TLV’s operation
is assigned to response. In both cases, TLV’s value field is filled with the home CES
information for that specific type. On the other hand, if the CES could not offer the
requested information, the Backoff code 2 (and error code = 2) that aimed for unsupported
TLV types is added to the reply list.

Assuming the TLV type is known and the operation is not query, the algorithm checks
whether the operation is reliable response or not. If yes, the TLV with the acknowledgment
operation and the same as received TLV’s value is added to the reply list. It is worth noting
that in this prototype, the inbound CES does not return any reply to cookie with the reliable
response operation.

6.5.5 Policy Engine Algorithm for Cookie Generation

As a cookie TLV is generated and also checked by the same edge node, each
communicating party can have its own internal algorithm for cookie generation. In this
prototype, a cookie is produced as follows. First, the expiry time is calculated by
incrementing the current time of the system by 5 minutes. Next, the identity of the
destination host is concatenated with the string constant named SECRET and further the
resulting string is given as an input to the MD5 hash function. Then, the constant string
namely VERSIONofSECRET, the generated hash value and the expiry time period are
merged together to create the corresponding cookie. At the end, the algorithm encrypts the
cookie with its secret that is generated by the AES algorithm. The cookie generation
formula is presented in Figure 6.9.
 𝑐𝑜𝑜𝑘𝑖𝑒 = 𝑉𝐸𝑅𝑆𝐼𝑂𝑁𝑜𝑓𝑆𝐸𝐶𝑅𝐸𝑇 + ℎ𝑎𝑠ℎ(𝑆𝐸𝐶𝑅𝐸𝑇 + 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝐷) + 𝑒𝑥𝑝𝑖𝑟𝑦 𝑡𝑖𝑚𝑒 (1)

 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑐𝑜𝑜𝑘𝑖𝑒 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑐𝑜𝑜𝑘𝑖𝑒, 𝑠ℎ𝑎𝑟𝑒𝑑 𝑠𝑒𝑐𝑟𝑒𝑡) (2)

 Figure 6.9: Cookie generation algorithm

The purpose of including expiry time in the cookie string is to eliminate reply attacks. In
other words, it is infeasible for malicious users to keep sending an overheard cookie after
its expiry time as the CES verifies the validity of the cookie while processing it. Exploiting
two constant strings (VERSIONofSECRET, SECRET) in the cookie generation algorithm
allows another way of replay attack prevention. These strings must be changed at regular
intervals in order to avoid unauthorized users from using an intercepted cookie for an
unlimited time period. It is worthy to note that the current prototype uses the time-invariant

 74

constants in cookie generation as the cookie is exchanged only during the negotiation
phase which is very short. Additionally, this procedure binds the cookie to the specific
session by means of the destination ID that is used in the cookie structure. Due to the
cookie encryption, the peer edge can neither access the actual cookie content nor generate
a new cookie and use it instead of the original one.

6.5.6 Policy Engine Algorithm for Cookie Verification

To check whether the received cookie is identical to the one previously sent towards the
peer, the Cookie Verification algorithm first decrypts the cookie with its secret. Then, it
follows a similar procedure to the Cookie Generation method and produces the
prefix_cookie as follows:
 𝑃𝑟𝑒𝑓𝑖𝑥 𝐶𝑜𝑜𝑘𝑖𝑒 = 𝑉𝐸𝑅𝑆𝐼𝑂𝑁𝑜𝑓𝑆𝐸𝐶𝑅𝐸𝑇 + ℎ𝑎𝑠ℎ(𝑆𝐸𝐶𝑅𝐸𝑇 + 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝐷) (1)

It is noteworthy to mention that the destination ID used in this string is equal to the source
ID field of the packet. In the developed algorithm, it is assumed that the sender ID remains
unchanged during cookie interactions.

After generating the prefix of the cookie, the algorithm compares the string with the same
portion of the received cookie string. If they were identical, next the validity of the cookie
needs to be examined. To do this, the cookie’s expiry time is extracted from the cookie and
it is compared with the current system time. If the expiry time is greater than the system
time, it means that the cookie is valid; otherwise the cookie has expired. This prototype
terminates the session in the second case. As described before, for ease of debugging, once
the connection is terminated, the prototype returns a notification message (CETP packet
with TOUT TLV with a zero value) to the peer.

6.5.7 Policy Engine Algorithm for Checking ID Requirement

The policy engine exploits the Check ID Requirement algorithm which is depicted in
Figure 6.10 so as to figure out whether a sender’s ID type meets the ID requirement of the
session’s policy or not. To do that, the algorithm compares each ID type in the ID-Reqc list
with the source ID type of the CETP packet. If the sender’s ID type is not found among the
required ID types, the procedure creates a CETP packet with an ID TLV query for the
desired ID type (IDQ). As described in Chapter 5, in order to enhance security and trust
between communicating edges, this message may also carry a cookie, CA Address and
signature TLV queries depending on the connection’s policy. Additionally, this algorithm
does not give any priority to any of the required ID types and always makes a query for the

 75

first ID type in the ID-Reqc list. However, a future implementation may have a certain
mechanism to differentiate between the preferred ID types.

Check sender’s ID
requirement

Get an ID type
from ID-Reqc list

Source ID type is
equle to retrieved ID

type
ReturnNo

There is more ID
type in ID-Reqc

list

Yes

Yes

Create New ID
type query and put
into CETP control

plane

No

 Figure 6.10: Check ID requirement algorithm

6.6 Policy Engine Algorithm for Creating oFSM

As described before, this prototype implements the policy control of CETP using the
postponing DNS message model. Therefore, upon reception of the DNS reply from an
authoritative server which is sent in response to local host’s DNS lookup, the policy engine
on the outbound edge begins negotiation with the peer through the Creating oFSM
algorithm. Figure 6.11 shows how the policy engine applies the policy when a flow is
initiated.

Create oFSM
Conformity of target ID

and policy ID
requirement

Forge CETP
packet with IDQ

TLV

Forge full
requirement

message

Set the FSM state
to pendingYes

No

Return packet for
forwarding

 Figure 6.11: Policy engine algorithm for creating oFSM

Before invoking this algorithm, the connection state and the FSM instance are created for
the session and both are initialized by using the DNS reply information. At this step, the
FSM’s state and transaction parameters are set to Idle and Initiate Flow respectively.
According to the value of the session’s state and transaction, the policy engine calls the
Creating oFSM algorithm. The algorithm first derives the policy associated with the local
host and then checks the conformity of the destination host ID type obtained from the DNS
reply with the ID requirement of the private host’s policy via the Check ID Requirement
method. If the ID requirement is not fulfilled, the algorithm returns the CETP packet with a
New ID type TLV query and other related control information; otherwise it returns a full
requirement message which is built using the Creating Full Requirement procedure. It is
important to note that in both cases the payload of the generated CETP packet is empty and
also the FSM’s state is set to pending before exiting the algorithm.

 76

6.7 Policy Engine Algorithm for Creating iFSM

Upon reception of a packet of a new flow from a peer, the policy engine invokes the
Creating iFSM algorithm that is depicted in Figure 6.12.

Process flow arrivals

Required TLV type is
offered in the received

TLVs

Return packet for
forwarding

Retrieve Policy’s
Reqc List

Get a new TLV
type from Reqc

List

There is more
TLV type in the

Reqc List

There is TQ
with zero value

in packet

There is cookie
TLV in packet cookie is validYes

No

Create notification
message

Terminate
connectionYes

No

Create notification
message

The packet has
payload

Create full
requirement Yes

No

Create CETP
packet with control

TLV replies

No

Yes No

Yes

The packet has
payload

Store TLV replies in FSM
pending list and create
IP packet with CETP

payload

Yes

No

There is
signature TLV

in packet

No

signature is
valid

Create notification
messageYes No

Yes

Conformity of
sender ID type and

policy ID
requirement

Yes

YesNo

Forge CETP
packet with IDQ

TLV
No

Set the FSM state
to ongoing

 Figure 6.12: Policy engine algorithm for processing flow arrivals

Since on the inbound edge the prototype does not keep any state for a new flow before a
successful connection setup, once the policy engine detects a packet that is not related to
any entry in the connection table, it calls the Creating iFSM algorithm. In other words, this
algorithm is applied to all packets of a new flow preceding connection establishment. The
algorithm first checks for a cookie TLV. If the cookie is found in the CETP control
signaling, it verifies the validity of the cookie using the Cookie Verification method. If
invalidity of the cookie is proven, the algorithm terminates processing and for debugging
purposes returns the notification message (i.e. CETP packet with TOUT TLV with zero
value). A similar procedure applies to the received signature TLV using the signature
verification algorithm. The algorithm also aborts policy processing if the CETP packet
contains the TOUT TLV with a zero value. In the current prototype, this message is only
meant to notify terminating connection on the peer edge.

Assuming the CETP packet does not contain an invalid cookie, an invalid signature or a
notification message, the Creating iFSM procedure derives the inbound policy
corresponding to the destination host. Then, with the help of the Check ID requirement
procedure it examines whether the sender’s ID type meets the ID requirement of the
destination policy. If the ID requirement is not met, the algorithm returns the CETP packet

 77

with the New ID type TLV query for the preferred ID type and other related control
information.

On the contrary, if a sender is identified by one of the preferred ID types, the algorithm
goes to the next step and examines whether the peer edge fulfills other destination host’s
requirements or not. To achieve that, it iterates over the policy Reqc list and looks for the
relevant values within the CETP control signaling for each required control information.
Then, it uses the processing control information method to check the received TLVs. If any
of the required information cannot be answered with the received control TLVs, the
algorithm returns a full requirement message. It is important to notice that in this case if
the CETP packet carries the payload along with the control information, the Creating iFSM
instead of a full requirement returns a notification message so as to tell the peer that the
connection cannot be established. This design decision is made because in the postponing
DNS model it is assumed that the first message does not contain any payload. Therefore,
from algorithm’s perspective, the CETP packet containing a non-empty payload means that
the inbound edge has already sent a full requirement and the outbound CES failed to reply
to queries appropriately. Consequently, there is no need to repeat a full requirement.

In contrast, assuming all requirements are met, first a connection state and FSM for the
ongoing session are generated and the state of the session is set to ongoing. Next, the
replies to the received TLVs are made via the Replying to control information algorithm.
After that, the algorithm checks the CETP payload. If the packet has payload, the data
packet is retrieved from the payload field and the generated control TLV replies are stored
in the FSM pending TLV list. Depending on the payload type, the algorithm exhibits
differing behaviors. In case of the IPv4 compressed encapsulation type, the complete IPv4
header with the destination host IP address as the destination address and the allocated
proxy address as a source address are added to the data packet and returned for forwarding
to the destination. For the Ethernet encapsulation, the entire IP packet is available in the
CETP payload. Thus, only the source and destination address fields are modified to the
destination IP address and proxy address respectively. But if the payload is empty, the
algorithm returns a new CETP packet with the control TLV replies and an empty payload
for forwarding to the peer CES.

However, there are different types for RLOCs and encapsulations and it is feasible that an
inbound policy includes more than one preferred RLOC and encapsulation type; it is
enough for the peer to support only one of the required RLOC and encapsulation types. As
an additional assumption, this algorithm ignores a changing ID type request from a sender

 78

in order to minimize the exposure of the destination host information before assuring the
sender’s legitimacy.

6.8 Policy Engine Algorithm for Processing Pending State

As described before, on an outbound edge the session goes to the pending state after
sending the first CETP packet. Therefore, upon reception of the response message from the
inbound CES, the policy engine exploits the Processing Pending State algorithm to process
the incoming CETP message and forge relevant packets.

Figure 6.13 illustrates how the Processing Pending State algorithm works. The algorithm
first checks whether the CETP packet carries TOUT TLV with a zero value. If the answer
is positive, it terminates policy processing and deletes all state information and FSM
related to that session. The algorithm exhibits the same behavior if either invalid cookie or
invalid signature TLV is found in the packet’s control signaling In this case, a DNS error
message is returned to the local host as a notification of unsuccessful connection
establishment.

Process pending state

Return packet for
forwarding

There is IDQ
TLV in packet

There is TQ
with zero value

in packet

There is cookie
TLV in packet

cookie is valid

Create notification
message and set
the FSM state to

Idle

Terminate
connection and

set the FSM state
to Idle

Create CETP
packet with control

TLV replies and
full requirement

The local host
support required

ID type

There is
signature TLV

in packet

signature is
valid

Create notification
message and set
the FSM state to

Idle

Store TLV replies in FSM
pending list and create
DNS reply with proxy

address

Create notification
message and set
the FSM state to

Idle

Yes

No No No Yes Yes

Yes Yes

No No

NoNoYes
Yes

Set the FSM state
to ongoing

 Figure 6.13: Policy engine algorithm for processing pending state

Assuming the CETP packet is not a notification message; the algorithm looks for the IDQ
TLV within the control signaling. If ID Query is found, the algorithm checks whether the
local host supports the required ID type or not. If the host cannot be identified by that ID
type, the procedure returns a notification message to tell the peer that the connection
cannot be established. In contrast, if the local host registers with the requested ID type as
well as the default random ID in the CES, the local host ID in the corresponding

 79

connection state and FSM changes to the value of the required ID type and the CETP
packet with the new source ID containing the control TLV replies and full requirement is
returned for forwarding to the peer. It is important to note that in this case the session
remains in the pending state.

When there is no IDQ TLV in the packet, the algorithm sets the state of the session to
ongoing. Then, the replies to the received TLVs are made via the Replying to Control
Information algorithm and are stored in the FSM pending TLV list. Finally, the DNS reply
containing the proxy address representing the destination host is sent back to the local host
by the algorithm.

6.9 Policy Engine Algorithm for Processing Ongoing State

The policy engine processes a packet that belongs to a session in ongoing state using the
Processing Ongoing State algorithm. Figure 6.14 shows the algorithm which is designed
for policy processing of ongoing state.

Process ongoing state

Return packet for
forwarding

There is payload
in packet

There is TQ
with zero value

in packet

There is cookie
TLV in packet

cookie is valid

Create CETP
packet with TLV

replies and empty
payload

Terminate
connection and

set the FSM state
to Idle

The packet has
CETP layer

There is
signature TLV

in packet

signature is
valid

Create notification
message and set
the FSM state to

Idle

Store TLV replies in
FSM pending list and
create IP packet with

CETP payload

Create notification
message and set
the FSM state to

Idle

Create CETP packet
with control TLVs in FSM

pending list and data
packet

No

Yes No No No No

YesYesYesYes

No No

Yes Yes

 Figure 6.14: Policy engine algorithm for processing ongoing state

The algorithm first checks whether a packet has CETP layer or not. If the packet is not
CETP message, it means that the message is originated from a local host and need to be
forwarded to the peer edge. Therefore, a CETP packet whose control signaling contains
control TLVs that were previously stored in the FSM pending TLV list and its payload that
were the actual data packet received from the private host is generated and returned.

 80

Assuming the packet has a CETP layer, the algorithm looks for TOUT TLV with a zero
value. If this TLV is found, it terminates policy processing and deletes all state information
and FSM related to that session. The algorithm exhibits a similar behavior if either invalid
cookie or invalid signature TLV is found in the packet’s control signaling. In all
aforementioned error cases, it returns an ICMP message (with an error message of a Host
is Unreachable) to the local host as an indication of the connection termination.

If no notification message, invalid cookie or invalid signature was detected, the algorithm
goes to the next step and checks the CETP payload. If the payload is not empty, the data
packet is extracted from the payload field. The algorithm modifies the IP header of the data
packet based on the payload type. If the encapsulation type is IPv4 compression, a new
IPv4 header with the destination host IP address as a destination address and the proxy
address as a source address is added to the data packet and is returned for forwarding to the
destination. In contrast, in the Ethernet encapsulation, the whole IP packet exists in the
CETP payload. Hence, only the source and destination address fields are modified to the
destination IP address and proxy address respectively. On the contrary, if the payload
carries nothing; the algorithm returns a new CETP packet with the control TLV replies and
empty payload for forwarding to the peer.

However, any of the communicating parties may request from the peer to change its ID
type while the session is in ongoing status, but this case has not been taken into account in
this prototype and left for future implementation.

 81

7 Implementation and Evaluation

This chapter describes a prototype that we implemented to verify the protocol logic and its
policy control explained in the previous chapter in details. At the beginning of the chapter,
the scope of the test network, the required experimental setup and necessary network
elements that were used in the test environment are discussed briefly. Next, the chapter
presents the test results which are collected from more than one hundred different test
cases. The general configuration of the testing environment is explained. Then some of test
cases are examined in more details to show how the prototype actually works. The
difficulties and issues we faced while designing and prototyping CETP and relevant
functionalities are discussed later. Finally, the effectiveness of the protocol for edge-to-
edge tunneling and policy control of cooperative firewalls is evaluated.

7.1 Test Network and Components

The prototype network is simulated on a PC running the Linux/Debian operating system.
Since the prototype requires a set of computers (at least five) to examine various test
scenarios, KVM (Kernel-based Virtual Machine) solution is used for virtualization
(available at http://www.linux-kvm.org). Using KVM, multiple virtual machines can be
run on a single PC so that each virtual machine has the virtualized hardware such as a
network card and is running the Linux/Debian operating system. To access virtual
machines from the main PC and run the source code files on the respective virtual PC, SSH
connections are established.

7.2 The Scope of Implemented Prototype

This thesis work is integrated into the primary CES prototype that has been implemented
as a proof of concept. Therefore, this prototype, like the original prototype, contains a
simplified implementation of the Customer Edge Switching architecture described in the
fourth chapter. Moreover, there are some limitations that were set to this prototype. To
facilitate the implementation work, the host registration operation is excluded. Instead, the
assumption was made that hosts are already registered into the respective CES and each
CES node maintains the valid information of all active hosts residing in its customer
network. It is also deemed that all virtual machines are behind a NAT and there is no
connection from the external network to the virtual PCs. In addition, the prototype does not
implement the hash algorithm that is used to calculate sufficiently unique random type of
IDs. The hash values are generated beforehand and stored along other ID types of that host
in the Host Register List (HRL) and the DNS database.

 82

This prototype does not include the dynamic initialization of admission policy as a
function of network condition, the source and destination ID types and other parameters. It
is assumed that each host in the private network is tied to a certain admission policy that
remains invariant under any situations. As CETP packets can be transported over the
Ethernet or on top of the IP layer, the CES device exploits the NAPTR resource record
type to forward a DNS query originated from a local host. The peer RLOC that is a
routable address to that CES and destination’s ID are encoded in a regular expression of
the focusing type within the response section of a NAPTR record:

‘‘A B U ‘‘ID+idprotocol’’ !^(.*)$!dest: C,D?E=F!’’

The A, B, E and F parameters describe the order, preference, address type and the actual
address of a given type respectively. The C and D parts indicate the destination ID type
and the actual value of ID.

In the original prototype, for CES-to-CES communication, the source and destination IDs
identifying communicating endpoints are carried in address fields of the IP packet and the
Ethernet frame, whereas in this implementation, CETP is used to tunnel data and signal
control related information between CES nodes while transporting different types of ID.

For implementing the signature TLV of CETP, the prototype does not exploit a public key
infrastructure. Instead, it is assumed that each CES has certificates of remote CES nodes
beforehand. Also, it does not use the diameter protocol to assure certificates of other CESs.
In the test network, the IPv4 routing is used within the private networks while the core
network can be built over Ethernet, IPv4 or IPv6.

The prototype by default identifies user devices in a private network with a unique random
type of IDs; however, upon a request to change ID type, any other type of ID can be used
as a user identifier. Furthermore, this work does not include on-demand multi-homing
functions and it was left for a future implementation.

7.3 Experimental Setup

The purpose of the test network is to simulate two customer networks and a core network
between them. The test environment consists of a number of private hosts (e.g. Host A,
Host B), two CES devices at the edge of each private network (CES A, CES B) and an
authoritative DNS server. Figure 7.1 illustrates the prototype network that is built using
virtualization on a single PC (cesproto).

 83

 Figure 7.1: The prototype network

Due to the prototype network topology and physical connection between all virtual
machines, care has been taken in terms of address allocation to make sure that Host A and
CES A are in the same private network and Host B and CES B reside in another private
network.

To configure the prototype network, each virtual machine must be configured individually.
The network configuration can be made via /etc/network/interfaces and /etc/resolv.conf
files as each virtual machine is running the Linux operating system. Additionally, a private
host uses the CES device that it is registered in as the name server.

In Linux, it is straightforward to simulate several networks by adding routes to respective
routing tables. Using this technique, the prototype network is divided into three different
networks while they are actually residing in the same physical network. To give an
example, the Host A virtual machine is configured so that all packets originated from Host
A are routed through CES A. This is done by the following Linux command:

 For IPv4: “route add default gw <CES A IPv4 Address> dev eth0”

 For IPv6: “route -A inet6 add default gw <CES A IPv6 Address> dev eth0”

The same procedure is applied to other virtual machines in order to add corresponding
routes. Furthermore, the necessary software and servers like Lynx are installed on the host
machines.

The DNS server (Bind 9) is installed on the virtual machine that serves all DNS queries
coming from other nodes in the prototype network. For the DNS machine, configuration is

 84

created via /etc/bind/named.conf.local and /etc/bind/zones/db.ces. Moreover, all virtual
machines are administered using virsh. Virsh provides the main and stable interface for
controlling the virtualized operating system.

7.4 Network Elements

This subsection is dedicated to describing the network elements exploited to simulate
different scenarios in the test environment.

Host: Host nodes are designed to simulate regular IP stack end systems. As described
before, at first they are registered to the corresponding home CES. After that, the CES has
their correct information including domain names, local addresses and IDs in its HRL.
Each host can establish a connection to a target machine by executing a DNS lookup for
the destination domain name, decoding received DNS responses and eventually
dispatching data flows to IP addresses obtained from DNS replies.

CES: CES devices reside at the edge of private networks and exchange packets between
the customer and core network in a similar way to NATs. More precisely, a CES passes
DNS inquiries from private hosts to the DNS server. Upon the reception of a reply, it
allocates a proxy IP address representing the destination host to the sender from its IP
address pool, stores the corresponding mapping information in the connection table and
sends a modified DNS reply back to the initiator. A CES can also negotiate with the
remote CES about some parameters (e.g. source ID type) before admitting a new flow. The
negotiation phase is fully policy controlled. Additionally, Customer Edge Switches unlike
NAT devices provide bi-directional connectivity for private hosts that they serve. In other
words, they accept the requests of connection invitation from other networks and deliver
them to the targeted host.

DNS Server: From the prototype perspective, this network element resembles an
authoritative name server. Therefore, it loads a master file at the beginning and generates a
set of resource records using the file content. After initialization, it is ready to receive DNS
queries and return appropriate replies.

7.5 External Libraries

Three external libraries are used in this implementation work. There are Scapy, Crypto and
DNSPython.

 85

7.5.1 Scapy

Scapy (available at http://www.secdev.org/projects/scapy/doc/installation.html) is an
interactive packet manipulation program which is written in python. It allows a user to
forge or dissect packets of different protocols, send and receive them, match queries and
responses and many other operations. Consequently, the prototype uses this program to
perform all packet manipulation and data transmission.

7.5.2 DNS Python

DNSPython is a DNS library for Python (available at http://www.dnspython.org/).
Generating DNS queries and replies, sending them on wire and other DNS related
operations in the prototype are done with DNSPython.

7.5.3 Python Cryptography

The Python cryptography toolkit (available at https://www.dlitz.net/software/pycrypto/)
includes a wide variety of cryptographic functions. It is aimed to provide a simple, reliable
and stable interface for existing cryptographic algorithms. In this thesis work, generating a
public and private key pair, encryption and decryption of messages and creating and
verifying signatures are done with the Python cryptography program.

7.6 Prototype Software Structure

The class diagram of the prototype is depicted in Figure 7.2.

 Figure 7.2: The class diagram of CES prototype

http://www.secdev.org/projects/scapy/doc/installation.html
http://www.dnspython.org/
https://www.dlitz.net/software/pycrypto/

 86

To implement the protocol and relevant methods, many changes have been made in the
following classes of the original prototype: PacketRelay, LocalHostRegister, NATTable,
GeneratingDNSDatabase, CES and DNSProxy. The CETP class is also added to the
current prototype in order to forge and dissect CETP packets. Additionally, the policy
control of CETP is implemented via the Policy Engine, Policy and FSM classes.

7.7 CETP Class Implementation

As all data transmissions in the prototype are done with Scapy, we decide to implement the
CETP packet class by extending the Scapy’s packet class and defining the packet
parameters in the field_list attribute. The different parameters of a CETP packet are
defined using built-in fields of Scapy. For example, as described in Chapter 5, the actual
ID value can have variable length. Thus, the source and target ID fields are defined with
Scapy’s StrLenField whose length is specified by the ID length parameters.

Moreover, the optional control TLVs fit into a string whose length is calculated as follows:

 𝑇𝐿𝑉 𝑙𝑒𝑛𝑔𝑡ℎ = 𝐻𝑒𝑎𝑑𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ − (𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷𝐿𝑒𝑛 + 𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝐷𝐿𝑒𝑛 + 8) (1)

Given this, two separate functions are used for adding a control TLV to the field and
parsing the TLV string captured from wire respectively.

Since signature TLV carries a signed packet header, in the adding control TLV
functionality, it is added after all other TLVs. To generate a signature, first the signature
TLV is filled with zeros (size of the value segment is fixed and is 128 octets) is added to
the CETP header. Then, the packet header is hashed to the corresponding MD with SHA-1
and finally the MD is signed by the private key of the home CES. The payload part is also
defined with a string field and encoded depending on the encapsulation type. On the other
hand, the data can be decapsulated from the CETP payload string and further may be
forwarded to the targeted private host. Additionally, there are three different methods in
this class that model CETP over Ethernet, on top of IPv4 or IPv6. The CETP packet class
is illustrated in Appendix B.

7.8 Testing Scenario

For testing purposes practically for checking the policy engine, ten hosts residing in the
private network (i.e. corporate network A) register in the outbound CES (i.e. CES A). Each
host is simulated using a virtual interface on Host A virtual machine and tied to the specific
packet admission policy regardless of ID type. The outbound policies associated with the

 87

local hosts are listed in Appendix C. Testing has been done in this manner because it is
rather difficult to keep track of policy initialization while ID types are being changed
during the session.

The testing process is divided into ten different parts. In each part, a certain policy is
assigned to the server residing in the private network B behind the inbound CES (CES B)
and ten hosts in the network A try to ping that server at the same time.

The described operation is done via a simple client program running on Host A. At the
beginning of this program, the DNS lookup for the remote server (i.e. Host B) is performed
on behalf of each private host and after the DNS resolution echo messages are directed to
the destination element. This program runs ten times and each time Host B is tied to
different packet admission policy. These policies are listed in Appendix D. As described in
Chapter 6, information of each host is defined in a setting file. Therefore, before each
testing part, the policy number of Host B in CES B’s configuration file is modified
manually. However, it seems easier to perform all testing scenarios at once and
automatically, but we found this method more convenient to capture exchanged packets
and analyze the results. The entire testing results are listed in ten separate tables and
presented in Appendix E. According to the obtained results, the policy processing module
of the prototype works as expected and we did not find any case that the prototype behaves
strangely. In the following sections, some special test cases are described in order to
provide an overall picture of testing.

7.9 Example Run of Inbound Policy Without any Requirements

It is possible that most of the applications running on a specific server require no extra
information from a client preceding the connection establishment. This test example is
designed to simulate such conditions. In this scenario, Host A behind CES A tries to
connect to Host B behind CES B while the policy of Host B has empty Reqc policy vector.
As previously mentioned, this prototype does its best to meet receiver’s preferences while
it is assumed that the sender tends to continue communication as he/she initiates the
connection. The following polices are defined for Host A and Host B in the correspondent
CES devices.
Policy of Host A:
Role=outbound
ID-Reqc=RANDOM
Reqc=
RR-Reqc=TOUT, IPv4_RLOC, IPv6_RLOC
Offerc=IPv4_RLOC
Available=FQDN,TOUT,IPv4_RLOC,Cookie,CA_Address,Signature

 88

Policy of Host B:
Role=inbound
ID-Reqc=RANDOM
Reqc=
RR-Reqc=FQDN, Signature
Offerc=
Available=FQDN,TOUT,IPv4_RLOC,IPv6_RLOC,Cookie,CA_Address,Signature

Due to the DNS postponing model, upon reception of the DNS reply from the DNS server,
CES A buffers this message and starts negotiations with the remote edge whose routing
locator is obtained from the DNS inquiry. The policy engine uses the Creating oFSM
algorithm to enforce Host A’s policy. According to the ID-Reqc policy vector, the sender’s
ID type needs to be a unique random number. Since in this prototype hosts are identified
with locally generated random numbers by default, a new ID type TLV is not required in
the CETP control signaling. In addition, as the Reqc list is empty and Offerc policy vector
contains IPv4 RLOC TLV, IPv4 RLOC TLV containing alternative IPv4 addresses of CES
A is the only control information which is added to the CETP packet. Since this TLV also
exists in the RR-Reqc policy vector, the TLV’s operation is set to reliable response.
Finally, CES A routes the forged CETP packet towards CES B. Figure 7.3 draws the
message flows in this test case.

Figure 7.3: Example of successful connection setup for a destination without any requirements

On the inbound edge, the policy engine exploits the Creating iFSM procedure to process
the received CETP message. From the Host B perspective, the preferred ID type is random.
Thus, there is no need to add a changing ID request to the CETP reply message. As the

 89

next step, the algorithm checks whether the Host B’s requirements can be answered by the
incoming packet. Since the Host B’s Reqc policy vector does not include any control TLV,
upon the first message the connection between two end nodes is established and relevant
state information for the session is stored in CES B’s connection table. To forge CETP
reply packet, IPv4 RLOC TLV with the acknowledgement operation is added to the control
signaling. On the other hand, as the Offerc list, same as the Reqc policy vector, is empty,
no additional control TLV is incorporated into the message.

When CES A receives the CETP packet from CES B, it forwards the DNS reply to Host A
and changes the session state to ongoing. Once Host A obtains the destination routing
information, it sends an echo message towards Host B. On the way to Host B, CES A picks
up the data packet, encapsulates it into a CETP message and eventually directs it to CES B.

On the opposite side, CES B extracts the original data packet from the CETP payload and
further delivers it to Host B. The echo reply message is delivered to Host A in a similar
way.

7.10 Example Run of Inbound Policy With A Specific ID Requirement

Some applications such as mission critical tasks only establish a connection with an end
user who is identified by a more secure ID type than locally generated random numbers.
Hence, if an inbound edge node receives a CETP packet with such sender’s ID type, it
requests the originator to change its ID to the preferred ID type. To test this scenario,
following policies are assigned to Host A and Host B respectively.

Policy of Host A:
Role=outbound
ID-Reqc=RANDOM
Reqc=
RR-Reqc=TOUT, IPv4_RLOC, IPv6_RLOC
Offerc=IPv4_RLOC
Available=IPv4_RLOC,Cookie,CA_Address,Signature,FQDN

Policy of Host B:
Role=inbound
ID-Reqc=MOC
Reqc=Signature,CA_Address,FQDN,IPv4_RLOC,IPv6_RLOC
RR-Reqc =
Offerc=Signature,IPv4_RLOC,IPv6_RLOC
Available=FQDN,TOUT,IPv4_RLOC,IPv6_RLOC,Cookie,CA_Address,Signature

 90

Since Host A policy is identical to the previous example, after the DNS resolution, the
Creating oFSM forges a similar CETP message (containing the IPv4 reliable response TLV
and empty payload) and forwards it to CES B.

Upon reception of the CETP message, CES B invokes the Creating iFSM to apply Host
B’s policy. According to the ID-Reqc policy vector, the sender is required to use the
Mobile Operator Certificate (MOC) identifier. As local hosts are identified by Random IDs
within this prototype, thereby the algorithm adds the changing ID type query for the MOC
ID type to the CETP reply message. As previously mentioned in Chapter 5, it is assumed
that only Cookie, Signature and CA address TLVs could company New ID type queries.
Thus, the algorithm checks whether the control information is present in the Reqc and
Offerc policy vectors. Since Host B’s Reqc policy vector contains Signature and CA
address TLVs; in addition to the New ID type TLV, Signature and CA address TLV
queries are incorporated into the reply message. It is important to note as Signature also
exists in the Offerc list, CES B provides its own signature within the value segment of the
Signature TLV. The message flow exchanged between two endpoints is illustrated in
Figure 7.4.

 Figure 7.4: Example of successful connection setup for a destination with MOC ID requirement

Since the CETP message that arrives at CES A contains the peer’s signature and New ID
type Query, the Pending State Processing algorithm first examines the validity of the

 91

signature and then checks whether Host A supports the MOC ID type or not. As the
signature is valid and Host A also registers with the MOC identifier in CES A, the
algorithm changes the local host’s ID from the random value to the MOC in the
corresponding connection state and builds the CETP reply message with the new source
ID. The reply message carries the CES A’s Signature and CA address that could be used
for an assurance query.

On the Inbound edge, when the Creating iFSM procedure receives the message with
expected sender’s ID (MOC), it looks for replies to other Host A’s requirements within the
message control signaling. The packet only carries replies to CA address and Signature
queries. Therefore, the algorithm creates a full requirement and returns it to CES A.
Signature, CA Address, FQDN, IPv4_RLOC and IPv6_RLOC TLVs are specified as Host
B’s requirements on the Reqc list. Consequently, the full requirement message contains
TLV queries for all these control TLVs. In addition, since Signature, IPv4_RLOC and
IPv6_RLOC also exist on the Offerc list; CES B offers its signature, alternative IPv4 and
IPv6 addresses in the value fields of signature, IPv4_RLOC and IPv6_RLOC TLVs
respectively.

Upon reception of the second CETP packet from CES B, CES A by means of the Pending
State Processing algorithm generates replies to the received TLV queries and stores them
in the session’s FSM pending TLV list. The reply TLV list contains Signature, CA Address
and FQDN response TLV. It also includes the IPv4_RLOC reliable response TLV as this
TLV is available in the RR-Reqc list as well as the Reqc policy vector. As IPv6_RLOC
does not exist on Host A’s available list and thereby could not be offered to the peer,
Backoff code 2 (error code = 2) is added to the reply TLV list. In the next step, CES A
forwards the pending DNS reply to Host A. After that Host A dispatches the echo message
destined to Host B. The echo message on the way to Host B first goes through CES A.
CES A creates a CETP message and incorporates the control information within the FSM
pending TLV list to the packet’s control signaling. The echo request is also fit into the
payload. Finally, CES A sets the state of the session to ongoing and routes the CETP
message to Host B.

On the opposite side, CES B using the Creating iFSM first checks whether Host B’s
queries could be replied with the control information in the message. The algorithm
initially examines CES A’s signature. As the signature is valid, it initiates a DNS lookup
using Host A’s domain name derived from the FQDN TLV. This is done to execute the
return routability check on naming level. After the successful return routability check, it

 92

comes to examine replies for remaining queries. Since the appropriate control information
for CA address and IPv4_RLOC TLVs (one of the requested RLOC type) is received from
CES A, the procedure sets the session’s state to ongoing and derives the original data
packet from the CETP payload. Then, it directs the echo message to Host B.

The CETP message containing the echo reply message along with the IPv4_RLOC and
Backoff code 2 TLV acknowledgements is sent to CES A. Finally CES A delivers the echo
reply to Host A.

7.11 Some Example of Unsuccessful Connection Establishments

In this section, some test scenarios in which connections did not end up to exchange of
data flows between two end points are examined in more detail.

7.11.1 Example Run of Unsupported ID Requirement

Let us assume that unlike the previous example, Host A does not support the MOC ID
type. Thus, when CES A receives the MOC ID query from the inbound edge and then it
did not find the MOC ID of Host A in its HRL, a notification message is sent back to the
remote edge and the session state information is deleted completely. At the end, CES A
sends the DNS error reply to the local host as a notification of the unsuccessful connection
setup. Figure 7.5 represents this testing scenario.

Figure 7.5: Example of unsuccessful connection establishment due to unsupported ID requirement

7.11.2 Example Run of Unsuccessful Return Routability check

For this test case, we again refer to the example of inbound policy with the MOC ID
requirement. To simulate a failure in the naming level return routability check, Host A

 93

registers in CES A’s HRL with a fake domain name. Hence, when CES B executes a DNS
query using Host A’s domain name that is derived from the FQDN response TLV, the
DNS server returns an error DNS reply. The reason is that no NS entry in the DNS
database is matched to the requested domain name. Upon reception of the error message,
CES B concludes that the sender is trying to masquerade as someone else and consequently
blocks the received echo message destined to Host B and terminates the connection with
the other end by sending a notification message. This action (i.e. terminating the
connection) is taken in order to eliminate unauthorized access. On the opposite side, CES
A removes the corresponding mapping state upon the notification message and informs
Host A about the connection setup failure using an ICMP error message. The described
scenario is depicted in Figure 7.6.

 Figure 7.6: Example of unsuccessful connection setup due to unsuccessful return routability check

7.11.3 Example Run of Unsupported Receiver Requirement

As described in Chapter 6, if a destination host inquires for specific control information
that a sender does not support according to its Available policy vector, the connection
setup fails and the inbound edge terminates the session. This scenario is tested with the
following Host A and Host B policies.

Policy of Host A:
Role=outbound

 94

ID-Reqc=RANDOM
Reqc=TOUT
RR-Reqc=
Offerc=IPv4_RLOC,MAC_RLOC,IPv6_RLOC,FQDN
Available=FQDN,IPv4_RLOC,IPv6_RLOC,Cookie,CA_Address,Signature

Policy of Host B:
Role=inbound
ID-Reqc=RANDOM
Reqc=TOUT,Signature,CA_Address,IPv4_RLOC,Report_unwanted_msg
RR-Reqc=Signature
Offerc=Signature,TOUT
Available=FQDN,TOUT,Ether_Payload_encapsulation,IPv4_Payload_encap
sulation,Signature

Figure 7.7 shows the message flow of the unsuccessful connection setup in which
destination host’s requirements are not fulfilled completely. After the DNS resolution, CES
A generates a CETP message containing TOUT TLV query, IPv4_RLOC, MAC_RLOC,
IPv6_RLOC and FQDN response in order to enforce Host A policy and further directs it to
CES B.

Figure 7.7: Example of unsuccessful connection establishment due to unsupported receiver requirements

On the inbound edge, CES B processes the received message and forges the CETP reply
packet. As Host B requirements cannot be answered by the control signaling of the CETP
message, CES B returns the full requirement message which carries TOUT, Signature, CA
address, IPv4_RLOC and Report_unwanted_msg query. It is important to note that CES B
provides its own signature and TOUT information to the peer within the message control
signaling. To limit receiver's visibility before connection setup, replies to the sender’s
queries are not included in the full requirement.

 95

Upon reception of the full requirement, CES A forwards the DNS reply to Host A and
waits for data packets from the sender. Once the data flow is received from Host A, CES A
encapsulates it into a CETP message and along with the control TLV replies sends back to
the inbound edge. The control signaling of the reply CETP contains the Backoff code 2
(error code = 2), Signature, CA address, IPv4_RLOC and Backoff code 2 (error code = 1)
response. The Backoff code 2 (error code = 2) response is added to the control signaling as
a response to the TOUT query. The reason is that the TOUT TLV does not exist on Host
A’s Available policy vector and thereby Host A does not offer its TOUT information to the
peer. Moreover, as Report_unwanted_msg TLV type is not defined in the current
prototype, the CETP message also carries Backoff code 2 (error code = 1) response.

When CES B receives the CETP message containing the control information that is unable
to fulfill all Host B’s requirements and non-empty payload, the inbound edge node
terminates the connection and returns a notification message to CES A.

On the outbound edge, CES A deletes the connection state upon the notification message
and sends the ICMP error message towards Host A as a notification of connection setup
failure.

7.11.4 Example Run in Disruptive Network

In real networks, it is highly probable that one of the parties involved in communication
interrupts for a while and recovers once the disruptive factors are eliminated. To examine
the described condition, let us assume the example of inbound policy without
requirements. After successful connection establishment, we tried to simulate disruptive
network by restarting either CES A or CES B. Let us consider a situation where CES A is
restarted while other communicating nodes including Host A, CES B and Host B are
running. In this case, CES A drops the data packets originated from Host A since it could
not match the messages to any entry in the connection table. As the next step, Host A is
notified about the connection failure via the ICMP error message from CES A. On the
contrary, in the above test example if CES B goes down and restart, CES B discards data
flows received from the other end (Host A) and returns a notification message (containing
TOUT TLV with a zero value) towards CES A. It is worthy to mention that if in the
described scenarios TCP connection is running between two hosts, the session will fail and
cannot recover once each of CES devices is restarted. To recover broken connections, Host
A should initiate communication and perform DNS lookup again.

 96

7.12 Problems Throughout the Research Work

At the beginning of the thesis work, we decided to implement a rough prototype of the
proposed protocol (CETP) so that we could get an overall picture of disparate protocol
functionalities; because it was clear that correct specification of such a complicated
functionality just on paper is not feasible. We implemented the packet structure several
times to obviate defects spotted during prototyping. To give an example, in the early
versions of the protocol, Q and R flag bits were a part of the fixed header and specified the
operation of the entire CETP message rather than certain control information. The
implementation work led us to shift these operation bits to the control TLV format. The
reason was that these signaling flags have no meaning for the payload which is aimed to
tunnel data flows; however, they are closely related to the CETP control signaling.

Although, at the first glance, this modification seems rather straightforward to implement,
in practice this design decision resulted in considerable additional complexity of the
protocol processing. During prototyping, we realized that systematic procedures need to be
designed to handle signaling that is happening via CETP control signaling. Consequently,
various algorithms were proposed and implemented before we came to an agreement for
the final implementation of policy control of CETP that we have done within this research
work. Furthermore, since the policy engine may operate in many ways, we prototyped and
evaluated only a limited number of them (e.g. postponing DNS model) and the rest is left
for further studies.

In addition, we encountered problems while we use Scapy as the primary tool for data
transmission and packet manipulation in the prototype. The main issue emerged when we
strived to modify Scapy classes and built-in functions for implementing the CETP packet
and policy engine class. Due to lack of documentation, we started probing different aspects
of the Scapy program by means of trial and error method. This approach can be applied
easily, but it is very time consuming and might not reveal all exceptional cases.

Even though, implementing CETP packet via extending packet class was a challenging
task due to alignment and padding considerations, undoubtedly the design, prototyping and
testing of the policy processing algorithms were the most difficult part of this thesis. In the
first place, we did not have a clear picture of the policy engine concept; however the
essence of this module was proven to us. Moreover, testing the policy engine so that it can
be claimed that the method works appropriately in all cases was a complicated task. It was
assumed that the policy processing algorithms are generic and thereby must be capable of
enforcing a wide variety of packet admission policies seamlessly. To obtain reliable

 97

results, one hundred test cases were designed in such a way that the policy engine
algorithms were examined thoroughly.

7.13 Evaluation of Results

In the developed prototype, CETP is used for inter CES communication. In addition to
policy processing test cases, the prototype was tested with the well-known protocols: SSH,
SFTP and HTTP. The testing results including packet captures indicate that the prototype
operates exactly as we expected. In all testing scenarios, both end points reside in the
private networks and thus data flows have to go through the CES devices before delivery
to the destination host. Moreover, the different messages with the variable content size are
sent from a private host to the other end in order to test fragmentation functionality.
Whenever the message size after adding the CETP header exceeds the CES machine’s
MTU and the DF bit is also off, the prototype fragments the data packet into smaller pieces
and encapsulates each segment using the Ethernet payload type. However, on the outbound
edge, the fragmentation task is carried out properly, but the inbound CES faces the
problem in reassembling the fragments and delivering the original packet to the local host.
As it is very rare that a sender sets the DF bit in the IP header to zero, we did not resolve
the problem within this thesis work and it is left for future implementation.

We also found out that in some situations especially during the negotiations it is possible
that an edge node needs to send an empty CETP packet (with no control TLV and no
payload) towards the peer. However, according to the flags field (C and R bits) of the
CETP header, if the CETP packet does not carry any control information, its payload must
be non-empty. As a consequence, with the current specification we cannot create an empty
CETP message. To counter this, the definition of the CETP flags needs to be modified.

7.14 Discussion

Although, in the first CETP specification, the Q and R flag bits were indicators of the
CETP message operation, the developed prototype made us to shift these operation bits to
the control TLV field. We made this decision because these signaling flags are
meaningless to tunneled data packets; rather, they are tied to the CETP control signaling
concept.

Additionally, in the early version of CETP, only two different operations were defined (i.e.
Query and Response) using the Q and R bits. Further studies led us to take advantage of all
four possible combinations of the operation bits and defined Query, Response, Reliable

 98

Response and Acknowledgment operations. These operations are aimed to assist the CES
devices in enforcing various packet admission policies. In other words, the edge nodes
using these operation bits can inquire for specific control information, reply to the received
queries from the remote edges and acknowledge the received replies. This design decision
had a significant impact on the way of defining policy vectors within this work. For
instance, the Reqc list is defined to declare the control information that must be queried
from the other end with the Query operation while the RR-Reqc list includes the control
TLVs that an edge node expects to receive the acknowledgement messages upon sending
them with the Reliable Response operation.

Since the purpose of policy control of CETP is to fulfill the receiver’s needs rather than the
sender’s requirement, the policy processing cannot be done in the same way for both
incoming and outgoing sessions. To differentiate between the policies for the inbound and
outbound connections, the Role parameter was added to the policy definition.

Another issue that captured our attention during the implementation work was two
different definitions of the length field in the control TLV format. After prototyping, we
realized that however choosing an appropriate length field (one-byte or two-byte length
parameter) according to the size of the value segment optimizes the packet size, it adds a
considerable overhead and complexity to the protocol processing. To simplify CETP
packet structure and avoid performance penalty, we decide to use the fixed-size length
parameter for all control TLVs regardless of their value segment size in a future prototype.

As described before, the CETP packet structure is divided into three parts: the fixed
header, optional control information and payload. The basic idea of introducing the
payload and the control signaling in CETP messages is to send signaling information along
a tunneled data flow in one packet rather in separate packets. As a result of this design
decision, the number of packets transporting over the core network is reduced
substantially. We also believe that with this packet format we can optimize the firewall
processing overhead and become close to the optimum Round-trip time (RTT). However,
for proving these claims we need to conduct performance testing on our prototype in a
future work.

On the other hand, to make ID encoding flexible and facilitate implementing future
extensions in CETP, ID fields and all control information are encoded in a TLV format.
Due to this encoding, CETP can be used for transporting arbitrary types of ID with a
variable size.

 99

The robustness testing of the CETP development was out of scope of this work. In a
separate research, for example we should introduce a separate TOUT for RLOC polling for
robustness reasons.

We have noticed that the term CA in CETP is not quite correctly used. In a future version
we may rename it to something more appropriate.

For optimization reasons, once oCES notices from the CETP response that it is unable to
meet the receiver's requirements, instead of storing the reply and sending DNS response to
host it could send DNS NACK to host and drop the session state. However, this is not done
in the current prototype and left for a future work.

In the current prototype, upon the second message from iCES, outbound CES forwards the
DNS reply to the private host. After this, the local host keeps sending data packets,
although iCES might need to communicate with a third party for example for return
routability check before establishing the connection. Thus data packets are received while
iCES is conversing with a third party might be lost. To counter this problem, we can buffer
data flows either in iCES or in oCES for limited period of time. This buffering would
allow iCES to complete the negotiation phase and further deliver data flows to the
destination host.

 100

8 Conclusion

The purpose of this thesis was to develop CETP as a new tunneling protocol over an IP

layer or directly on top of an Ethernet frame in order to transport data flows and control

information from one customer network to another. This research work also includes the

policy control of CETP. The developed prototype was evaluated with various testing

scenarios. The test results prove that CETP can be used as means for edge-to-edge

communication and signaling.

Within this thesis, Customer Edge Switching with the help of CETP provides global

connectivity for hosts and servers residing in the private address spaces. This approach

relieves the IPv4 address shortage by separating the dual role of an IP address as an

identifier and locator at the edge node. In the test environment, we have assumed that both

communicating parties reside in two different private networks and are identified by

arbitrary type of IDs and located using private addresses. The reason is that in this work;

we only studied inter-CES communication in that all traffic from/to the private host must

go through the CES.

The Customer Edge Switching is targeted to eliminate address spoofing and improve trust

and security among disparate customer networks. CETP assists CES devices to achieve

this goal through performing a return routability check on naming and forwarding level

and by signing the control information. Additionally, the CES by means of CETP enforces

various packet admission policies to each ongoing session. More specifically, the CES

takes advantage of the CETP control TLVs to declare the information which the

destination host requires from the sender before successful connection establishment.

As this thesis has been done as a part of a larger project whose different components were

implemented with Python, this prototype was also programmed with Python and thereby

was not optimized in terms of performance. The performance of the current prototype can

be enhanced considerably, if it is recoded with C / C++. The developed algorithms within

this prototype are well-documented so that further functionalities can be added smoothly.

 101

However, this prototype applies static admission policies to ongoing connections, in a

future work; the policy initialization can be dynamic and changed according to the network

condition and end-point’s needs. We believe that this topic must be studied in separate

research work. Furthermore, a future prototype instead of hardcoded certificates can

exploit the public key infrastructure to derive required certificates and perform assurance

queries.

The developed prototype uses some basic policy constraints to enforce different policies.
However, we expect that in a future implementation each CES device can define more
complex policy constrains that specify the acceptable and feasible policies systematically.
For example, the policy definition is not really useful if its Offerc policy vector includes
certain TLV type while that TLV does not exist on the Available policy vector. This means
that the CES cannot reply to the queried control information, however, according to the
Offerc policy vector the CES is allowed to provide the control information for that TLV
type.

It is worthy to mention that this thesis work was integrated to the latest version of the CES

program which is adapted to the open flow design and tested with a wide variety of test

cases. On the contrary, the mobility and multi-homing functionalities for CETP are not

implemented within this work and are left for the future implementation.

 102

References

[1] C. Adamas. 1997. The CAST-128 Encryption Algorithm. RFC 2144.

[2] B. Agrawal, N. Kumar, and M. Molle. 2005. Controlling Spam Emails at the Routers.
IEEE International Conference on Communication. Seuol, Korea.

[3] P. Albitz, and C. Liu. 1998. DNS and BIND. Third Edition. O’Reilly, Inc. ISBN 1-
56592-512-2.

[4] R. Andreson. 2008. Security Engineering: A Guide to Building Dependable Distributed
systems. Second Edition. John Wiley & Sons, Inc. ISBN 0-47-006852-6.

[5] F. Audet, and C. Jennings. 2007. Network Address Translation (NAT) Behavioral
Requirements for Unicast UDP. RFC 4787.

[6] F. Audet, and C. Jennings. 2007. Network Address Translator (NAT) Terminology
Behavioral Requirements for Unicast UDP. RFC 4787.

[7] S. Bellovin. 2003. ICMP Traceback Messages. RFC 2026.

[8] S. Bellovin. 1998. Security Problems in the TCP/IP Protocol. Computer
Communication Review. Vol. 19:2. pp 32-48. ISSN 0146-4833.

[9] M. Bishop. 2004. Introduction to Computer Security. First Edition. Addison-Wesley
Professional, Inc. ISBN 0-32-124744-5.

[10] M. Chapple. 2003. The GSEC Prep Guide: Mastering SANS GIAC Security
Essentials. First Edition. John Wiley & Sons, Inc. ISBN 0-7645-3932-9.

[11] Z. Chen, S. Gue, R. Duan, and S. Wang. 2009. Security Analysis on Mutual
Authentication against Man-in-the-Middle Attack. First International Conference on
Information Science and Engineering. Nanjing, China.

[12] W. Cheswick, S. Bellovin, and A. Rubin. 2000. Firewalls and Internet Security:
Repelling the Wily Hacker. Second Edition. Addison-Wesley. Inc, ISBN 0-20-163466-
X.

[13] D. Clark. 30-31, 2007. MIT Communications Futures Program. Bi-annual meeting.
Philadelphia. PA.

[14] E. Comer. 2006. Internetworking With TCP/IP – Principles, Protocols, And
Architecture. Fifth Edition. Pearson Education, Inc. ISBN 0-13-187671-6.

[15] Computer Incident advisory Committee (CIAC). 1995. Advisory Notice F-08 Internet
Spoofing and Hijacked Session Attacks [Retrieved on 17.08.2012]

Available: http://www.sans.org/reading_room/whitepapers/threats/introduction-ip-
spoofing_959

[16] N. Doraswamy, and D. Harkins. 2003. IPSec. Second Edition. Prentice Hall, Inc.
ISBN 0-13-046189-X.

[17] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. 2009. Locator/ID Separation
Protocol (LISP). draft-farinacci-lisp-12.txt. Work-in-progress.

http://www.sans.org/reading_room/whitepapers/threats/introduction-ip-spoofing_959
http://www.sans.org/reading_room/whitepapers/threats/introduction-ip-spoofing_959

 103

[18] Federal Information Processing Standards Publication 197. 2001. Announcing the
Advance Encryption Standard (AES). United States National Institute of Standards and
Technology (NIST). [Retrieved on 17.08.2012]

Available: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[19] M. Gritter, D. Cheriton. 2001. An Architecture for content routing support in the
Internet. USITS’01 Proceedings of the 3rd conference on USENIX Symposium on
Internet Technologies and Systems. San Francisco, California, USA.

[20] F. Halsall. 2005. Computer Networking and the Internet. Fifth Edition. Addison-
Wesley Professional, Inc. ISBN 0-321-26358-8

[21] D. Johnson, C. Perkins, and J. Arkko. 2004. Mobility Support in IPv6. RFC 3775.

[22] J. Kangasharju, and K. Ross. 2000. A Replicated Architecture for the Domain Name
System. IEEE INFOCOM. Tel Aviv, Israel.

[23] R. Kantola. 2010. Implementing Trust-to-Trust with Customer Edge Switching. in
press for AMCA in connection with AINA.

[24] R. Kantola. 2009. Customer Edge Switching – A Trust-to-Trust Architecture for the
Internet. Helsinki University of Technology, Department of Communication and
Networking.

[25] R. Kantola, N. Beijar, Y. Zheng, and M. Pahlevan. 2012. Customer Edge Traversal
Protocol (CETP). [Retrieved 29.3.2012]

Available: http://www.re2eee.org

[26] C. Kaufman. 2005. Internet Key Exchange Protocol (IKE2). RFC 4306.

[27] F. Kurose, and W. Ross. 2005. Computer networking – A Top-Down Approach
Featuring the Internet. Third Edition. Pearson Education, Inc. ISBN 0-321-26976-2.

[28] P. Leppäaho. 2012. Design of Application Layer Gateway for Collaborative Firewalls.
M.Sc thesis. Comnet/Aalto. Espoo.

[29] J. Llorente. 2012. Private Realm Gateway. M.Sc thesis. Comnet/Aalto. Espoo.

[30] D. Maughan, M. Schertler, M. Schneider, and J. Turner. 1998. Internet Security
Association and Key Management Protocol (ISAKMP). RFC 2408.

[31] J. Mäepää, V. Andersson, G. Camarillo, and A. Keränen. 2010. Impact of Network
Address Translator Traversal on Delays in Peer-to-Peer Session Initiation Protocol.
IEEE Global Communication Conference (GLOBECOM). Miami, Florida, USA.

[32] M. Mealling, and R. Daniel. 2000. The Naming Authority Pointer (NAPTR) DNS
Resource Record. RFC 2915.

[33] T. Mendyk-Krajewska, and Z. Mazur. 2010. Problem of Network Security Threats.
Third Conference on Human System Interactions. Rzeszow, Poland.

[34] MEVICO Deliverable D 3,1. Packet Transport Architectures and Technologies for the
Mobile Networks.Work in progress.

[35] P. Mockapetris. 1987. Domain Names – Implementation and Specification. RFC
1035.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.re2eee.org/

 104

[36] J. Mogul, and S. Deering. 1990. Path MTU Discovery. RFC 1191.

[37] A. Muller, G. Carle, and A. Klenk. 2008. Behavior and Classification of NAT Devices
and Imlications for NAT Traversal. IEEE Network. Vol. 21:5. pp 14-19. ISSN 0890-
8044.

[38] R. Rivest, and A. Shamir. 1978. A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communication of the ACM. Vol. 21:2. pp 120-126. ISSN
0001-0782.

[39] M. Robshaw. 1995. Stream Ciphers. RSA Laboratories Technical Report TR-701.
[Retrieved on 17.08.2012]

[40] J. Rosenberg. 2010. Interactive Connectivity Establishment (ICE): A Protocol for
Network Address Translator (NAT) Traversal for Offer/Answer Protocols. RFC 5245.

[41] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. 2008. Session Traversal Utilities
for NAT (STUN). RFC 5389.

[42] B. Schneier. 1994. Description of a New Variable-Length Key, 64-Biet Block Cipher
(Blowfish). Fast Software Encryption: Second International Workshop. Leuven,
Belgium.

[43] P. Sirsuresh, M. Holdrege, and Lucent Technologies. 1999. IP Network Address
Translator (NAT) Terminology and Consideration. RFC 2663.

[44] W. Stallings. 2003. Network Security Essentials Applications and Standards. Second
Edition. Pearson Education, Inc. ISBN 0-13-035128-8.

[45] M. Tanase. 2003. IP Spoofing: An Introduction [Web Document]. SecurityFocus
(Symantec Connect) [Retrieved on 17.08.2012]

[46] V. Velasco. 2000. Introduction to IP Spoofing [Web Document]. SANS Institute
Infosec Reading Room. [Retrieved on 17.08.2012]

Available: http://www.symantec.com/connect/articles/ip-spoofing-introduction

[47] L. Virtanen. 2009. Communicating Globally Using Private IP Addresses. M.Sc thesis.
Comnet/TKK, Espoo.

Available: ftp://ftp.rsasecurity.com/pub/pdfs/tr701.pdf

[48] P. Vixie, J. Dunlap, and J. Karels. Name Server Operations Guide for BIND Release
4.9.5. CSRG. Department of Electrical Engineering and Computer Science. University
of California. Berkeley. California. [Retrieved on 17.08.2012]

Available: http://docs.freebsd.org/44doc/smm/10.named/paper.pdf

[49] Y. Zhang. 2007. Trust Management for Mobile Computing Platforms. Doctoral
Dissertation. Comnet/TKK. Espoo. [Retrieved 29.3.2012]

 Available: http://lib.tkk.fi/Diss/2007/isbn9789512291205/

[50] H. Zhao. 2003. Security in Telecommunications and Information Technology. First
Edition. International Telecommunication Union.

[51] Y. Zheng, R. Kantola, and Y. Shen. 2012. Unwanted Traffic Control via Hybrid Trust
Management. IEEE TrustCom. Liverpool, UK.

http://docs.freebsd.org/44doc/smm/10.named/paper.pdf
http://lib.tkk.fi/Diss/2007/isbn9789512291205/

 105

[52] G. Ziemba, D. Reed, and P. Traina. 1995. Security Considerations for IP Fragment
Filtering. RFC 1858.

[53] E. Zwicky, S. Cooper, and B. Chapman. 2000. Building Internet Firewalls. Second
Edition. O’Reilly Media, Inc. ISBN 1-56-592871-8.

 106

Appendices

Appendix A

 TLV TLV-Code

range
Query
mnemonics

Response
mnemonics

Reliable
Response
mnemonics

ACK
mnemonic

New ID type 0x4×(0x1.0x7F) IDQ -- -- --
IPv4 Payload
Encapsulation

0x204…0x207 4PEQ 4PER 4PERR 4PEA

IPv6 Payload
Encapsulation

0x208…0x20B 6PEQ 6PER 6PERR 6PEA

Ethernet
Payload
Encapsulation

0x20C…0x20F EPEQ EPER EPERR EPEA

IPv4 RLOC 0x404…0x407 4RQ 4RR 4RRR 4RA
IPv6 RLOC 0x408…0x40B 6RQ 6RR 6RRR 6RA
Ethernet RLOC 0x40C…0x40F ERQ ERR ERRR ERA
TOUT 0x604…0x607 TQ TR TRR TA
Cookie 0x60A…0x60B

 -- -- CORR COA

CA Address 0x60C…0x60F CAQ CAR CARR CAA
Domain
information

0x610…0x613 DQ DR DRR DA

Signature 0x614…0x617 SQ SR SRR SA

Unexpected
Message report

0x619…0x61B -- UR URR UA

Backoff Code 0 0x681…0x683 -- BR0 BRR0 BA0

Backoff Code 1 0x685…0x687 -- BR1 BRR1 BA1

 107

Appendix B
class CETP(Packet):
 name = "CETP"
 fields_desc = [
 # Version field
 BitField("version", 1, 3),
 #Flags Part
 FlagsField("flags", 0, 2, "CR"),
 #Header Length
 BitField("HL",0,11),
 #Length of whole packet
 ShortField("PayloadLength",0),
 #source identification
 ByteField("SourceType", 0),
 ByteField("SourceLen", 0),
 #destination identification
 ByteField("TargetType", 0),
 ByteField("TargetLen", 0),

 StrLenField("sourceID", "", length_from=lambda pkt:pkt.SourceLen),
 #Destination ID
 StrLenField("targetID", "", length_from=lambda pkt:pkt.TargetLen),
 # List of TLVs

 ConditionalField(StrLenField("TLVs", "", length_from=lambda pkt:pkt.HL-
pkt.SourceLen-pkt.TargetLen-8),lambda pkt:pkt.flags == 2),

 #data plane in CETP
 StrField ("Payload", ""),
]

 108

Appendix C
Outbound Policy Number One:
Role = outbound
ID-Reqc = RANDOM
Reqc=
RR-Reqc = TOUT, IPv4_RLOC, IPv6_RLOC
Offerc = IPv4_RLOC
Available= FQDN, TOUT, IPv4_RLOC, Cookie, CA_Address, Signature,
Ether_Payload_encapsulation

Outbound Policy Number Two:
Role=outbound
ID-Reqc=RANDOM
Reqc= TOUT
RR-Reqc=TOUT, IPv4_RLOC, IPv6_RLOC
Offerc= Error_code1
Available=FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature,
MAC_RLOC

Outbound Policy Number Three:
Role = outbound
ID-Reqc = RANDOM
Reqc = FQDN, IPv4_RLOC, Cookie, Error_code1
RR-Reqc= Error_code1
Offerc =
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature

Outbound Policy Number Four:
Role = outbound
ID-Reqc = RANDOM
Reqc = FQDN, MAC_RLOC, IPv6_RLOC, Cookie
RR-Reqc = IPv4_RLOC
Offerc = IPv6_RLOC, FQDN
Available= IPv4_Payload_encapsulation, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie

Outbound Policy Number Five:
Role = outbound
ID-Reqc = RANDOM
Reqc = TOUT
RR-Reqc =
Offerc = IPv4_RLOC, MAC_RLOC, IPv6_RLOC, FQDN
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature

Outbound Policy Number Six:
Role = outbound

 109

ID-Reqc = RANDOM
Reqc = FQDN, Cookie
RR-Reqc =TOUT
Offerc = IPv4_RLOC, MAC_RLOC, IPv6_RLOC, FQDN
Available = Cookie, CA_Address, Signature

Outbound Policy Number Seven:
Role = outbound
ID-Reqc = RANDOM
Reqc = FQDN, IPv4_RLOC, IPv6_RLOC, Cookie
RR-Reqc = IPv4_RLOC, IPv6_RLOC
Offerc =IPv6_RLOC
Available = IPv4_RLOC

Outbound Policy Number Eight:
Role = outbound
ID-Reqc = RANDOM
Reqc = MAC_RLOC
RR-Reqc = MAC_RLOC, Signature
Offerc = IPv4_RLOC
Available = Ether_Payload_encapsulation, FQDN, TOUT, IPv4_RLOC, CA_Address,
Signature

Outbound Policy Number Nine:
Role = outbound
ID-Reqc = RANDOM
Reqc = Signature, CA_Address, IPv6_RLOC
RR-Reqc = TOUT, Signature
Offerc = IPv4_RLOC, MAC_RLOC
Available = FQDN, TOUT, IPv4_RLOC, Cookie, Signature

Outbound Policy Number Ten:
Role = outbound
ID-Reqc = RANDOM
Reqc=
RR-Reqc = IPv6_RLOC
Offerc =
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature

 110

Appendix D
Inbound Policy Number One:
Role = inbound
ID-Reqc = MAID
Reqc = Signature, CA_Address, FQDN, IPv4_RLOC, IPv6_RLOC,
Ether_Payload_encapsuation, IPv4_Payload_encapsulation
RR-Reqc = IPv4_RLOC, MAC_RLOC, TOUT
Offerc = FQDN, IPv4_RLOC, IPv6_RLOC
Available = Cookie, CA_Address, Signature, IPv4_RLOC, MAC_RLOC

Inbound Policy Number Two:
Role = inbound
ID-Reqc = RANDOM
Reqc = MAC_RLOC, IPv4_RLOC, IPv6_RLOC, Signature, Cookie,
IPv4_Payload_encapsulation
RR-Reqc = CA_Address
Offerc = TOUT
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature,
Ether_Payload_encapsulation

Inbound Policy Number Three:
Role = inbound
ID-Reqc = MOC
Reqc = CA_Address, FQDN, IPv6_RLOC, MAC_RLOC
RR-Reqc=
Offerc = FQDN
Available = FQDN, TOUT, CA_Address, Signature

Inbound Policy Number Four:
Role = inbound
ID-Reqc = RANDOM
Reqc = TOUT, Signature, CA_Address, IPv4_RLOC
RR-Reqc = Signature
Offerc = Signature, TOUT
Available = FQDN, TOUT, Ether_Payload_encapsulation, IPv4_Payload_encapsulation,
Signature

Inbound Policy Number Five:
Role = inbound
ID-Reqc= MAID
Reqc = IPv4_Payload_encapsulation, Cookie
RR-Reqc = Signature, TOUT
Offerc = IPv4_RLOC, IPv6_RLOC
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature

Inbound Policy Number Six:
Role = Inbound

 111

ID-Reqc = RANDOM
Reqc = Signature, CA_Address, FQDN, IPv4_RLOC, IPv6_RLOC, Cookie
RR-Reqc = IPv4_RLOC, IPv6_RLOC
Offerc = MAC_RLOC
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie

Inbound Policy Number Seven:
Role = inbound
ID-Reqc = MOC
Reqc = Signature, CA_Address, FQDN, IPv4_RLOC, IPv6_RLOC
RR-Reqc=
Offerc = Signature, Error_code1, IPv4_RLOC, IPv6_RLOC
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature,
MAC_RLOC

Inbound Policy Number Eight:
Role = inbound
ID-Reqc = RANDOM
Reqc =
RR-Reqc = FQDN, Signature
Offerc =
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature

Inbound Policy Number Nine:
Role = Inbound
ID-Reqc = MAID
Reqc = TOUT, Error_code1, FQDN, IPv4_RLOC, IPv6_RLOC
RR-Reqc = CA_Address, Signature
Offerc = Signature, TOUT
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature

Inbound Policy Number Ten:
Role = inbound
ID-Reqc = RANDOM
Reqc = Signature, CA_Address, FQDN, IPv4_RLOC, IPv6_RLOC
RR-Reqc = TOUT
Offerc = CA_Address, Signature, IPv6_RLOC
Available = Cookie, CA_Address, Signature, TOUT

 112

Appendix E
Testing Scenario Number 1:

In this test case, all local hosts in the private network A behind CES A tried to ping host B
residing in the private network B behind CES B at the same time. For this scenario, host B
applies inbound policy number one to all incoming connections.

Outbound
Policy
Number

Host
Address

 Setup
Time (ms)

 DNS
Process
Time(ms)

Ping
Waiting
Time (ms)

Expected
Result

Failure Reason

 1 10.12.0.121 59 77 216 Success ------------
 2 10.12.0.122 X Failure X Fail Host does not

support MAID
ID type.

 3 10.12.0.123 X 76 Failure Fail Not support any
encapsulation
type.

 4 10.12.0.124 X 61 Failure Fail Not support
FQDN TLV.

 5 10.12.0.125 X Failure X Fail Host does not
support MAID
ID type.

 6 10.12.0.126 X 64 Failure Fail Not supported
any RLOC.

 7 10.12.0.127 X 42 Failure Fail Not support
signature.

 8 10.12.0.128 X Failure X Fail Host does not
support MAID
ID type.

 9 10.12.0.129 X 75 Failure Fail Not support CA
address.

 10 10.12.0.130 X 67 Failure Fail Not support any
encapsulation
type.

NB1: inbound CES based on its policy required MAID ID type.
NB2: each host starts its negotiation with random ID type.
NB3: hosts with 10.12.0.121, 10.12.0.125 and 10.12.0.128 IP addresses do not support
MAID ID type.
NB4: In case of success, in this testing scenario set up CETP Connection could be
completed in two round trips. In contrast, in case of failure three round trips are needed.
NB5: Setup CETP Connection Time = since the DNS reply is received from the DNS
server until the modified DNS reply is forwarded to the host by outbound CES.
DNS process Time = since a host sends the DNS Query till the modified DNS reply is
forwarded to the host by outbound CES.
ping waiting time = since a sends a ping request till it receives the ping reply from the
server residing behind the inbound CES.

 113

NB6: Number of sent TLVs by inbound CES = 5 (full requirement)

Testing Scenario Number 2:

In this test case, host B applies inbound policy number two to all incoming connections.

Outbound
Policy
Number

 Host
Address

 Setup
Time(ms)

 DNS
Process
Time(ms)

Ping
Waiting
Time(ms)

Expected
Result

Failure Reason

 1 10.12.0.121 X 46 Failure Fail Not support IPv4
encapsulation type.

 2 10.12.0.122 X 34 Failure Fail Not support IPv4
encapsulation type

 3 10.12.0.123 X 43 Failure Fail Not support IPv4
encapsulation type.

 4 10.12.0.124 X 43 Failure Fail Not support
signature.

 5 10.12.0.125 X 88 Failure
Fail

Not support IPv4
encapsulation type.

 6 10.12.0.126 X 43 Failure Fail Not supported any
RLOC.

 7 10.12.0.127 X 43 Failure Fail Not support
signature.

 8 10.12.0.128 X 39 Failure
Fail

Not support any
encapsulation type.

 9 10.12.0.129 X 65 Failure Fail Not support any
encapsulation type.

 10 10.12.0.130 X 50 Failure Fail Not support any
encapsulation type.

NB1: In case of success, in this testing scenario CETP connection setup could be
completed in one round trip. In contrast, in case of failure two round trips are needed to
complete negotiations.

Testing Scenario Number 3:

In this test case, host B applies inbound policy number three to all incoming connections.

Outbound
Policy
Number

 Host
 Address

 Setup
Time (ms)

 DNS
Process
Time(ms)

Ping
Waiting
Time(ms)

Expected
Result

Failure Reason

 1 10.12.0.121 X 48 Failure Fail Not support any
RLOC.

 2 10.12.0.122 28 39 131 success -----------------

 114

 3 10.12.0.123 X Failure X Fail Host does not
support MOC ID
type.

 4 10.12.0.124 X 45 Failure Fail Not support CA
address.

 5 10.12.0.125 74 100 198 success ----------------
 6 10.12.0.126 X Failure X Fail Host does not

support MOC ID
type.

 7 10.12.0.127 X 48 Failure Fail Not support
required TLVs.

 8 10.12.0.128 X 46 Failure Fail Not support any
RLOC type.

 9 10.12.0.129 X Failure X Fail Host does not
support MOC ID
type

 10 10.12.0.130

26

43 131 success ------------------

NB1: inbound CES based on its policy required MOC ID type.
NB2: each host starts its negotiation with random ID type.
NB3: hosts with 10.12.0.123, 10.12.0.126 and 10.12.0.129 IP addresses do not support
MOC ID type.
NB4: In case of success, in this testing scenario CETP connection setup could be
completed in two round trips. In contrast, in case of failure three round trips are needed.
NB5: Number of sent TLVs by inbound CES = 7 (full requirement)

Testing Scenario Number 4:

In this test case, host B applies inbound policy number four to all incoming connections.

Outbound
Policy
Number

 Host
 Address

 Setup
Time (ms)

 DNS
Process
Time (ms)

Ping
Waiting
Time (ms)

Expected
Result

Failure Reason

 1 10.12.0.121 40 57 181 success -----------------
 2 10.12.0.122 45 56 177 success -----------------
 3 10.12.0.123 49 73 202 success -----------------
 4 10.12.0.124 X 59 Failure Fail Not support

FQDN TLV.
 5 10.12.0.125 82 106 255 success ----------------
 6 10.12.0.126 X 63 Failure Fail Host does not

support ID type.
 7 10.12.0.127 X 63 Failure Fail Not support

time out TLV.
 8 10.12.0.128 45 58 158 success -----------------

 115

 9 10.12.0.129 44 62 Failure Fail Not support CA
address.

 10 10.12.0.130

45 63 189 success ----------------

NB1: In case of success, in this testing scenario CETP connection setup could be
completed in one round trip. In contrast, in case of failure, two round trips are needed to
complete negotiations.
NB2: We just consider successful cases that have been completed successfully.
NB3: Number of sent TLVs by inbound CES = 4 (full requirement)

Testing Scenario Number 5:

In this test case, host B applies inbound policy number five to all incoming connections.

Outbound
Policy
Number

 Host
 Address

 Setup
Time (ms)

 DNS
Process
Time (ms)

Ping
Waiting
Time (ms)

Expected
Result

Failure Reason

 1 10.12.0.121 X 51 Failure Fail Not support IPv4
encapsulation
type.

 2 10.12.0.122 X Failure X Fail Host does not
support ID type.

 3 10.12.0.123 X 46 Failure Fail Not support IPv4
encapsulation
type.

 4 10.12.0.124 152 172 468 success ---------------
 5 10.12.0.125 X Failure X Fail Host does not

support ID type.
 6 10.12.0.126 X 44 Failure Fail Not support any

required TLV.
 7 10.12.0.127 X 44 Failure Fail Not support any

required TLV.
 8 10.12.0.128 X Failure X Fail Host does not

support ID type.
 9 10.12.0.129 X 58 Failure Fail Not support IPv4

encapsulation
type.

 10 10.12.0.130

X 49 Failure Fail Not support IPv4
encapsulation
type.

Testing Scenario Number 6:

In this test case, host B applies inbound policy number six to all incoming connections.

 116

Outbound
Policy
Number

 Host
Address

Setup
Time(ms)

 DNS
Process
Time(ms)

Ping
Waiting
Time(ms)

Expected
Result

Failure Reason

 1 10.12.0.121 19 37 146 success -----------------
 2 10.12.0.122 15 27 134 success -----------------
 3 10.12.0.123 24 42 154 success -----------------
 4 10.12.0.124 X 46 Failure Fail No signature TLV.
 5 10.12.0.125 60 84 21 success --------------
 6 10.12.0.126 X 32 Failure Fail Not support any

RLOC.
 7 10.12.0.127 X 37 Failure Fail Not support IPv4

encapsulation.
 8 10.12.0.128 18 34 139 success --------------
 9 10.12.0.129 X 33 Failure Fail Not support IPv4

encapsulation
 10 10.12.0.130

20 37 156 success ----------------

NB1: In case of success, in this testing scenario CETP connection setup could be
completed in one round trip. In contrast, in case of failure, two round trips are needed to
completed negotiation.
NB2: I just consider successful cases that have been completed successfully.
NB3: Number of sent TLVs by inbound CES = 7 (full requirement)

Testing Scenario Number 7:

In this test case, host B applies inbound policy number seven to all incoming connections.

Outbound
Policy
Number

 Host
Address

Setup
Time(ms)

 DNS
Process
Time(ms)

Ping
Waiting
Time(ms)

Expected
Result

Failure Reason

1 10.12.0.121 104 119 251 success --------------

2 10.12.0.122 106 120 247 success --------------

3 10.12.0.123 X Failure X Fail Host does not
support MOC ID
type.

4 10.12.0.124 X 93 Failure Fail Not support
signature.

5 10.12.0.125 149 173 276 success ---------------

6 10.12.0.126 X Failure X Fail Host does not
support MOC ID
type.

 117

7 10.12.0.127 X 100 Failure Fail Not support any of
required control
TLVs except
RLOC.

8 10.12.0.128 83 94 199 success ---------------

9 10.12.0.129 X Failure X Fail Host does not
support MOC ID
type.

10 10.12.0.130 103 123 253 success --------------

NB1: inbound CES based on its policy required MOC ID type.
NB2: each host starts its negotiation with random ID type.
NB3: hosts with 10.12.0.123, 10.12.0.126 and 10.12.0.129 IP addresses do not support
MOC ID type.
NB4: In case of success, in this testing scenario CETP connection setup could be
completed in two round trips. In contrast, in case of failure three round trips are needed.
NB5: Number of sent TLVs by inbound CES = 6 (full requirement)

Testing Scenario Number 8:

In this test case, host B applies inbound policy number eight to all incoming connections.

Outbound
Policy
number

 Host
Address

Setup
Time(ms)

 DNS
process
Time(ms)

Ping
waiting
Time(ms)

Expected
result

Failure reason

 1 10.12.0.121 18 31 106 success ------------
 2 10.12.0.122 15 31 106 success ------------
 3 10.12.0.123 16 32 121 success -----------
 4 10.12.0.124 20 35 120 success -----------
 5 10.12.0.125 59 86 185 success -----------
 6 10.12.0.126 16 36 114 success -------------
 7 10.12.0.127 20 32 108 success -------------
 8 10.12.0.128 11 24 100 success -------------
 9 10.12.0.129 43 55 133 success ------------
 10 10.12.0.130

18 30 107 success -------------

NB1: In case of success, in this testing scenario CETP connection setup could be
completed in one round trip. In contrast, in case of failure, two round trips are needed to
completed negotiation.
NB2: Number of sent TLVs by inbound CES = 0 (full requirement)

 118

Testing Scenario Number 9:

In this test case, host B applies inbound policy number nine to all incoming connections.

Outbound
Policy
number

 Host
Address

 Setup
Time
(ms)

 DNS
process
Time(ms)

Ping
waiting
Time(ms)

Expected
result

Failure reason

 1 10.12.0.121 53 68 Failure Success -----------
 2 10.12.0.122 X Failure X Fail Host does not

support MAID ID
type.

 3 10.12.0.123 X 65 Failure Fail Unknown required
TLV error_code1.

 4 10.12.0.124 X 87 Failure Fail Unknown required
TLV error_code1.

 5 10.12.0.125 X Failure X Fail Host does not
support MAID ID
type.

 6 10.12.0.126 X 72 Failure Fail Unknown required
TLV error_code1.

 7 10.12.0.127 X 69 Failure Fail Unknown required
TLV error_code1.

 8 10.12.0.128 X Failure X Fail Host does not
support MAID ID
type.

 9 10.12.0.129 X 64 Failure Fail Unknown required
TLV error_code1.

 10 10.12.0.130 X 73 Failure Fail Unknown required
TLV error_code1.

NB1: inbound CES based on its policy required MAID ID type.
NB2: each host starts its negotiation with random ID type.
NB3: hosts with 10.12.0.121, 10.12.0.125 and 10.12.0.128 IP addresses do not support
MAID ID type.
NB4: In case of success, in this testing scenario CETP connection setup could be
completed in two round trips. In contrast, in case of failure three round trips are needed.
NB5: Number of sent TLVs by inbound CES = 7 (full requirement)
 There is not any successful connection in this scenario.

Testing Scenario Number 10:

In this test case, host B applies inbound policy number ten to all incoming connections.

Outbound
Policy
number

 Host
Address

 Setup
Time(ms)

 DNS
process
Time(ms)

Ping
waiting
Time(ms)

Expected
result

Failure reason

 1 10.12.0.121 44 55 176 success ----------

 119

 2 10.12.0.122 45 59 18 success ----------
 3 10.12.0.123 42 60 197 success ----------
 4 10.12.0.124 X 55 Failure Fail Not support signature.
 5 10.12.0.125 80 105 254 success ----------
 6 10.12.0.126 X 52 Failure Fail Not support FQDN.
 7 10.12.0.127 X 58 Failure Fail Not support CA

address.
 8 10.12.0.128 45 65 167 success ---------
 9 10.12.0.129 X 58 Failure Fail

Not support CA
address.

NB1: In case of success, in this testing scenario CETP connection setup could be
completed in one round trip. In contrast, in case of failure two round trips are needed to
completed negotiation.
NB2: Number of sent TLVs by inbound CES = 5 (full requirement)

	AALTO UNIVERSITY
	Acknowledgments
	Table of Contents
	List of Acyrynoms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Problem
	1.2 Objectives
	1.3 Scope
	1.4 Structure

	2 The Basics of Network Security
	2.1 Network Security
	2.1.1 Network Security Architecture
	2.1.2 The Basic Components of Network Security
	2.1.3 Identification, Authentication and Authorization
	2.1.4 Trust in Networks
	2.1.5 Security Vulnerabilities and Threats

	2.2 Network-based Attacks
	2.2.1 SYN Flooding
	2.2.2 Smurfing
	2.2.3 Eavesdropping
	2.2.4 Data Modification
	2.2.5 Distributed Denial-of-Service Attack
	2.2.6 Spamming
	2.2.7 IP Spoofing (Identity Spoofing)
	2.2.8 Man in the Middle Attack

	2.3 Firewalls
	2.4 Cookie
	2.5 Cryptography
	2.5.1 Symmetric Cipher
	2.5.2 Asymmetric Cipher
	2.5.3 The RSA Encryption Algorithm
	2.5.4 Certificate Authority
	2.5.5 One-way Hash Function
	2.5.6 Signature

	2.6 Return Routability Check

	3 Some Basics of the Internet
	3.1 NAT
	3.2 Basic NAT
	3.3 NAPT
	3.4 NAT Address Assignment Behavior
	3.5 NAT Traversal Issues
	3.6 NAT Traversal Techniques
	3.6.1 Session Traversal Utilities for NAT
	3.6.2 Traversal Using Relay NAT
	3.6.3 Interactive Connection Establishment
	3.6.4 ALG

	3.7 DNS Overview
	3.7.1 The Domain Name Space
	3.7.2 Resource Records
	3.7.3 Resolvers
	3.7.4 DNS Message Structure
	3.7.5 Name-to-Address Resolution
	3.7.6 Address-to-Name Resolution

	3.8 Fragmentation and Reassembly
	3.8.1 Incoming Fragmented Packets at NAT Device

	4 Customer Edge Switching
	4.1 Objectives
	4.2 Requirements
	4.3 Customer Edge Switching Overview
	4.4 CES Architecture
	4.5 Message Flow Across Trust Domains

	5 Customer Edge Traversal Protocol
	5.1 CETP Objectives
	5.2 Requirements
	5.3 CETP Packet Structure
	5.4 Protocol Compulsory Control Header
	5.4.1 Identity Encoding
	5.4.2 Control TLV Format

	5.5 CETP Control Signaling
	5.5.1 RLOC TLV
	5.5.2 Timeout of the Customer Edge State
	5.5.3 Cookie TLV
	5.5.4 New ID Type Query and CA Address TLV
	5.5.5 Domain Information
	5.5.6 Signing CETP Header
	5.5.7 Reporting Unexpected Messages
	5.5.8 Backoff TLV

	5.6 Reporting Unwanted Traffic and Malware
	5.7 Payload in CETP
	5.7.1 Header Compression for IPv4 Payload
	5.7.2 Ethernet Encapsulation for any Payload Protocol

	5.8 Security Mechanisms Implemeneted with CETP
	5.8.1 Return Routability Checks
	5.8.2 State Management
	5.8.3 ID Management
	5.8.4 Signature
	5.8.5 Reporting Attacks
	5.8.6 Policy Control of CETP

	6 Principles of CETP Policy Processing
	6.1 Policy Control of CETP
	6.2 Policy Class
	6.3 FSM Class
	6.4 Policy Engine Class
	6.5 Auxiliary Methods in Policy Engine Class
	6.5.1 Policy Engine Algorithm for Creating Full Requirements
	6.5.2 Policy Engine Algorithm for Processing Control Information
	6.5.3 Policy Engine Algorithm for Signature Verification
	6.5.4 Policy Engine Algorithm for Replying to Control Information
	6.5.5 Policy Engine Algorithm for Cookie Generation
	6.5.6 Policy Engine Algorithm for Cookie Verification
	6.5.7 Policy Engine Algorithm for Checking ID Requirement

	6.6 Policy Engine Algorithm for Creating oFSM
	6.7 Policy Engine Algorithm for Creating iFSM
	6.8 Policy Engine Algorithm for Processing Pending State
	6.9 Policy Engine Algorithm for Processing Ongoing State

	7 Implementation and Evaluation
	7.1 Test Network and Components
	7.2 The Scope of Implemented Prototype
	7.3 Experimental Setup
	7.4 Network Elements
	7.5 External Libraries
	7.5.1 Scapy
	7.5.2 DNS Python
	7.5.3 Python Cryptography

	7.6 Prototype Software Structure
	7.7 CETP Class Implementation
	7.8 Testing Scenario
	7.9 Example Run of Inbound Policy Without any Requirements
	7.10 Example Run of Inbound Policy With A Specific ID Requirement
	7.11 Some Example of Unsuccessful Connection Establishments
	7.11.1 Example Run of Unsupported ID Requirement
	7.11.2 Example Run of Unsuccessful Return Routability check
	7.11.3 Example Run of Unsupported Receiver Requirement
	7.11.4 Example Run in Disruptive Network

	7.12 Problems Throughout the Research Work
	7.13 Evaluation of Results
	7.14 Discussion

	8 Conclusion
	References
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Testing Scenario Number 1:
	Testing Scenario Number 2:
	Testing Scenario Number 3:
	Testing Scenario Number 4:
	Testing Scenario Number 5:
	Testing Scenario Number 6:
	Testing Scenario Number 7:
	Testing Scenario Number 8:
	Testing Scenario Number 9:
	Testing Scenario Number 10:

