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Abstract

The expansion of the global Internet and the advent of Internet of Things (IoT) have
made Denial of Service (DoS) attacks a real threat against web services, especially as
these attacks are easily mounted and there may be monetary incentives to enact them.
Therefore, there is a need for practical security solutions, built on existing Internet
architecture, that would help against the DoS- and speciĄcally against Distributed
Denial of Service (DDoS) attacks that are even more dangerous, as they can harness
large amounts of network resources against a single victim.

The Realm Gateway security software concept aims to help in this regard, and it is
basically a combination of Domain Name System (DNS) server and Network Address
Translation (NAT) service. This system protects the web service behind it from
unwanted traffic by detaching the service to a private network address space and
allocating access for the service with the DNS for clients behaving in a good manner
while active client reputation monitoring is utilized.

The tests done in this thesis show that the Realm Gateway system works well
against DoS- and DDoS-attacks in some cases and it offers good ideas in the network
security and service availability context, but to make the system fully feasible in prac-
tice, the Realm Gateway software itself should be reĄned, updated and tested further.

Keywords The Realm Gateway, Network security, NAT, DNS, DoS, DDoS, BGP,
TCP, IPv4
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Tiivistelmä

Maailmanlaajuisen Internetin laajentuminen ja asioiden Internetin esiintulo ovat
tehneet palvelunestohyökkäyksistä todellisen uhan nykyisiä verkkopalveluita vastaan,
varsinkin kun palvelunestohyökkäyksiä on helppo toteuttaa ja niiden tekemiseen voi
olla rahallisia kannustimia. Siksi on tarvetta käytännöllisille turvallisuusratkaisuille
verkossa, joita on rakennettu olemassa olevan Internetin arkkitehtuurin pohjalle.
Näitten ratkaisuiden tulisi suojata erityisesti jakautuneita palvelunestohyökkäyksiä
vastaan jotka ovat vaarallisia, koska ne voivat hyväksikäyttää isoa määrää tietoverkon
resursseja yksittäistä uhria vastaan.

Realm Gateway-turvallisuusohjelmisto on suunniteltu auttamaan juuri edellä mainit-
tujen uhkien torjumisessa. Perusteiltaan tämä ohjelmisto yhdistelee Network Address
Translation-järjestelmien (NAT) ja Internetin nimipalveluja hoitavan Domain Name
System-järjestelmän (DNS) toiminnallisuutta. Realm Gateway suojaa sen taakse
sijoitettuja verkkopalveluita ongelmalliselta tietoliikenteeltä eristämällä kyseisen
palvelun yksityisverkkoon ja jakamalla pääsyä palveluun vain asiallisesti käyttäyty-
ville asiakkaille suojaukseen liitetyn DNS-palvelun ja NAT-osoitteenvaihdon avulla.
Asiakkaiden käyttäytymisen seuranta perustuu heistä kerättyyn mainetietoon ja tätä
hyväksikäyttäen esimerkiksi liikaa palvelua kuormittavat asiakkaat voidaan sulkea
pois.

Tässä työssä tehdyt testit osoittavat että Realm Gateway-järjestelmä toimii hyvin
tiettyjä palvelunestohyökkäyksiä vastaan ja tarjoaa hyviä ideoita verkkoturvallisuu-
den ja verkkopalveluiden saatavuuden viitekehyksessä. Tulisi kuitenkin huomioida
että mikäli tätä järjestelmää halutaan hyödyntää kunnolla käytännön tilanteissa,
itse Realm Gateway-ohjelmistoa tulisi kehittää ja testata pidemmälle.

Avainsanat Realm Gateway-ohjelmisto, Tietoturva, NAT, DNS,
Palvelunestohyökkäykset, Jakaantuneet palvelunestohyökkäykset, BGP,
TCP, IPv4
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1 Introduction

With the growth of the Internet and with the advent of Internet of Things (IoT),
there are increasing number of networked devices all around us. The combination
of utilizing these devices and gathering data about peopleŠs communication and
behavior in social networks, among other places, has led to new network service
concepts. In addition, various existing services expand, update and see competitors
emerge. This can be thought as a digitalization process, where many aspects of
everyday life are coming to be handled or supported by these services. Examples
of this merging of physical and digital realms can be smart homes where web ser-
vice can adjust central heating automatically based on temperature measurements,
self-driving cars that exchange sensor and location information with each other and re-
mote control and monitoring of machinery in distant locations in an industrial setting.

There are various important questions regarding these new services such as if some
of them would be necessary or beneĄcial at all, especially if one wants to protect
privacy and maintain direct control instead of delegating responsibilities to artiĄcial
intelligence? It is possible, however, to see important service concepts where digi-
talization and networking can offer improved efficiency and safety, energy savings
and decreased monetary costs. For example, utilizing banking services on the web
can save time and resources compared to an actual visit to a bank office and using
self-driving cars could negate the human errors of the drivers. When these services
become critical for enabling everyday life to go on smoothly, one must ensure service
security and reliability, as disregarding these qualities can cause devastating effects.
It is easy to imagine that problems with automated car controls can cause traffic
accidents and malfunctions in controlling industrial equipment remotely could cause
loss of revenue and even human injuries in extreme cases.

The security of networked services relates to the realm of computer security and
cybersecurity which are mostly interchangeable concepts. This context has three
major aspects: conĄdentiality, integrity and availability. Confidentiality generally
means access control and ensuring privacy whereas integrity means that accessed
data is trustworthy. Lastly, availability means that services should be accessible and
working in the time of need, hopefully without a fault. Availability can be connected
to the idea of reliability where work can be done, for example, to ensure that physical
components of the system are not faulty and have back-ups. In this thesis, in the
realm of cybersecurity, availability is thought more as a quality linked to reacting
either proactively or actively to threats from outside in order to keep a particular
service up and running. Simple example of this for some network service is having
measures available to handle sudden unexpectedly high amount of incoming clients
without large effect on the overall system performance. All three of these major
aspects are important for critical web services and disregarding one of them may
lead to issues with the other two.[1] Major factors related to problems with service
availability speciĄcally can be Denial of Service (DoS) attacks, where unwanted and
bogus clients overload the service. This can be connected to the increasing amount
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of IoT-devices, which is expected to be nearly 10 billion in year 2020, as can be
seen in Figure 1 [2]. Unfortunately, malicious entities may harness these devices
as participants to DoS-attack campaigns as they might have poor or non-existent
security features.

Making important web services truly feasible requires taking related cybersecurity
concerns seriously. This can mean designing systems and devices with security in
mind from the bottom up, even if it would require more resources. In the case of
IoT, this could mean that even the simpler devices could have some access control
and the possibility to update their software in case of security Ćaws. With network-
ing infrastructure, key point with enhancing service security is to leverage existing
technologies to limit the costs to various Internet Service Providers (ISP), who are
important middle-men in the Internet, as they usually control the routes between
the client and distant web services. ISPs are rarely direct stakeholders with these
services so network updates and improvements that affect the connections between
the clients and servers are more likely to go through if they donŠt demand much from
a particular ISP, especially in Ąnancial terms.

Figure 1: Projection on the global amount of connected IoT devices

1.1 Background and motivation

The basic routing of data in the Internet is done by the Internet Protocol (IP), from
which two versions are in use: Internet Protocol version 4 (IPv4) which uses 32-bit
addresses and Internet Protocol version 6 (IPv6) which uses 128-bit addresses, both of
which deĄne the addressing scheme of the whole network. IP addresses are analogous
to real life post addresses, where these addresses are added to packets, or digital
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IP packets with networking, to denote their destination and the source they came
from. Additionally, packets are directed towards the correct destination by entities
en route, which would be postal logistic centers, harbors, airports, etc. in physical
realm and router computers in the network in the IP case.[3][4][5]. As nowadays
there are more and more networked devices in existence, one can notice that the IPv4
address space of roughly 4,2 billion addresses is not even enough for distributing
personal addresses for each human on earth. This limitation becomes more apparent
when non-personal connected devices are added to the calculation. IPv6 was devised
in parts to solve this addressing limitation as it increases the address pool size to 2
to the power of 128, but it has not yet wholly replaced IPv4 as implementing the
overall change could be expensive and difficult for ISPs. One way to circumvent
the IPv4 addressing limitations is to utilize Network Address Translation (NAT)
methods, where multiple network entities are placed behind a single IP address [6].
Even if IPv4 is still the mainstay on the Internet, NATs and IPv6 have made it eas-
ier to increase network size, which is apparent with the growing amount of IoT devices.

Keeping important web services up and running reliably becomes challenging if they
face DoS-attacks or Distributed Denial of Service (DDoS) attacks where bogus clients
may be distributed all over the Internet, which makes them harder to pinpoint; to
clarify, DDoS-attacks are DoS attacks with multiple attacking network hosts, whereas
DoS-attack would usually refer to a case with singular attacking node or to the overall
concept of malicious resource denial. Malicious entities can beneĄt from the increased
amount of available IP addresses due to NATs and IPv6 and can gain access to large
pools of clients, which can be used in the DDoS-campaigns. The service downtime
caused by these attacks can lead to the host suffering large monetary damages due
to lost revenue while also inconveniencing legitimate clients. As nowadays many
enterprises rely more and more on web services, the cost of even a single, effective
DoS-attack campaign could be millions of dollars [7]. One example of serious success-
ful DDoS-attacks in recent times is the attack campaign against the ISP Dyn in The
United States in 2016, which utilized the Mirai botnet that was essentially a network
of compromised devices with a central, malicious controller. The attack eventually
caused various large web services such as NetĆix and Twitter to be down for several
hours.[8] Another recent example attack was the DoS-campaign against government-
related web services here in Finland, which caused the national user veriĄcation
system to be down. This made people unable to access services such as the website
for Finnish National Insurance Institution which relates to the government-funded
health care system.[9] When reasons behind all these attacks are speculated beyond
cyber-vandalism, it could be surmised that sometimes certain state actors are in play
when dissenting web services connected to political opponents or differing viewpoints
are disrupted. Additionally, there is often Ąnancial gain to be had when criminal
organizations target companies for ransom with the threat of impending DDoS-attack.

As various types of DoS- and DDoS-attacks can have large negative impact on service
availability, it would then be prudent to devise ways to mitigate these attacks espe-
cially in regard to critical web services. If one aims to improve how networks work
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instead of trying to manipulate each different web service speciĄcally in the network
infrastructure context, it is difficult and cumbersome to enact large scale changes,
especially if these changes are dependent on complex new hardware and software
changes and updates. This is related to the fact that Internet is a series of different
networks, where each network has a its own operator who have varying motives and
Ąnancial resources. Having this large group of network actors then leads to a big prob-
lem of overloading web services in the global Internet as IP source address validity is
not enforced. Similarly to postal services, the source address of an item, be it digital
or physical, can be forged as it is usually not needed for the item to reach the correct
destination. Additionally, there are no global network identities that could be used
to pinpoint malicious actors, which means that often temporary and likely fabricated
IP source addresses are the only identiĄer of suspect data traffic. Internet service
providers could mitigate source address forgeries by enacting ingress Ąltering to make
sure that outgoing data traffic from their end has legitimate source addresses, but
it demands resources and it is not often in their best interest in the Ąnancial sense [10].

When one is looking for solutions and improvements to web service security, it is wise
to keep the aforementioned ISP constraints in mind. It would be prudent to build
on top of the existing Internet infrastructure which means utilizing the standard
tools of Internet routing and addressing such as Domain Name System (DNS), IPv4,
IPv6, NATs and Border Gateway Protocol (BGP) [3][11][12][13]. In addition, perhaps
one way to enact positive change could be to try to adjust the network operator
mindset so that the responsibility of cleaning up malicious data traffic is shared
with incentives coming from a common pool of resources. This could mean having
some sort of trust information available so that web services could make informed
decisions about clients and not automatically expect them to behave in a benevolent
manner from the get-go. In game theory, it is beneĄcial to act poorly versus oneŠs
opponent to maximize gains if trust and relationships between the players are not
established yet, which can mean in a networking context that servers should be at
least moderately cautious with incoming clients.[14]

For achieving better results in securing web services, it is also good to combine
different approaches which can lead to adding previously mentioned trust concept
to work with existing network protocols and technologies. An example of this is
the Realm Gateway software concept which is designed to act as gatekeeper and
as a gateway to outside Internet for important web services and mobile users. It
maintains reputation data via monitoring client behavior which relates to trust
management. Additionally, it acts as a Ąrewall, as a NAT and as a DNS server to
hide and protect critical web services from unwanted attention and also to facilitate
legitimate connections between well-behaving clients and these services.[15]
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1.2 Research problem

The goal of this thesis is to Ąnd out if a combined and creative use of standard
Internet routing, NAT and DNS with the help of Realm Gateway software could be a
feasible and practical way to improve web service security and availability especially
against DoS- and DDoS-attacks. Methods for achieving this can include actively
monitoring client behavior in the system to block out malicious entities as quickly as
possible and distributing incoming load to the service to multiple entry points.

1.3 Objectives and scope

In this thesis, the scope of research and testing is limited to a simulated network en-
vironment, where traditional network infrastructure with clients, servers and routers
is set up virtually utilizing mainly private network spaces. The focus will be on
validating system functionality with legitimate network data traffic and sending
simulated DoS- and DDoS-traffic to the system while observing how well it performs
in defending against this bogus traffic in terms of resource use, blocking attackers and
admitting real clients. Additionally, objective is also to observe how much running
the defensive measures in the simulation will inconvenience legitimate users with
delays.

1.4 Structure of the thesis

Following this introductory chapter, the thesis will have three chapters related to
background information. The Ąrst of these will present the basic building blocks
of Internet architecture and network routing with some added insight to security
issues related to these concepts. The second background chapter will discuss concepts
related to network security in the Internet in more detail. The focus there is to
present threats to service availability and also to showcase the Realm Gateway
software principles. Finally, the last background information chapter will discuss
the principles of simulated network environments that will be used in the actual
simulation scenarios in the thesis.

After the background chapters, there is a chapter explaining the simulation setups
and testing scenarios where the Realm Gateway performance is observed with the
aforementioned research problem in mind. In this chapter, the results of each test
are also presented and analyzed in conjunction of the respective test scenario. The
Ąnal chapter of the thesis which comes after the discussion about testing will then
have conclusions about the tasks that have been done and musings about future work.
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2 Internet architecture and routing primer

In telecommunication, when two different entities connect to each other with the
purpose of exchanging data, there is a need to establish a common language and
rules so that the communication can succeed and the messages are understood. This
is where the concept of protocols comes in. To enable data transmissions between
vast arrays of different programs and devices, various set of rules have been designed
so that the entities in the network have shared knowledge on how to initiate commu-
nication, how to send and receive data and how to interpret this data. These rules
are protocols such as IPv4, Transmission Control Protocol (TCP) and Hypertext
Transfer Protocol (HTTP) [16][17].

Additionally, two major principles are in play when one discusses network data
traffic. The data transmissions can be either connectionless or connection-oriented,
where with the former, data is sent towards destination without initial connection
setup between the sender and the Ąnal receiver and without guarantees that the
data actually reaches the destination. With the latter, connection establishment
procedures are used to ensure that the participants can reach each other before the
actual data traffic can begin, where there are more options available for controlling
the data Ćow. It is important to note that connectionless networking requires the
use of existing addressing infrastructure, where entities in the network generally have
global, unique addresses, which are utilized in routing so that data traffic can be
directed toward correct nodes at least initially. In contrast, with connection-oriented
networks, communication between network nodes requires signaling and network
management and the address scheme linked to data traffic is local, where the iden-
tifying logic for the data transmission Ćows for example doesnŠt have information
about the wider network structure.[11, pp. 1Ű33]

As the Internet is actually a collection of networks with countless different nodes,
getting into contact with a peer will usually mean that the data is sent through
intermediate machines that need to know where to direct this data. This forwarding
of traffic to the correct destination is made possible by a process called routing. The
actual role of routers is further deĄned by the end-to-end principle that is prevalent
in the Internet. End-to-end means that as the traffic should Ćow from the initial
source to the Ąnal destination, the control mechanisms for manipulating this traffic
in case for transmission errors, network delays, etc. are placed to the end points as
much as possible. This can reduce the processing load for intermediate routers, but
the downside is that data traffic management responsibility is then shifted to the
traffic source and destination, which can be especially problematic for web servers
serving large numbers of clients.[11, pp. 1Ű33][18]

This chapter describes the basic building blocks of the Internet with the TCP/IP
model and also discusses the standard routing principles with also providing in-
sight into the DNS, which makes Internet more user-friendly by providing address
translation from hard-to-read numerical addresses to more understandable text names.
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2.1 The protocol stack in the Internet

As there are multiple different technologies and protocols in use in the Internet in
parallel, it is paramount to use architecture where there are common elements in place
to ensure network and protocol inter-operability. With this in mind, the TCP/IP
model is used here to describe the basic structure of the Internet in a layered manner,
where each layer has a set of protocols and technologies for speciĄc, common purpose
and is generally meant to work independently, utilizing primitives and abstractions
to use the services of other layers.[19]

2.1.1 IP and TCP/IP model

The TCP/IP model, which is shown in Figure 2, describes an architecture where net-
work entities are placed into a protocol stack, with the IPv4 and IPv6 being the critical
component on the Internet layer that is the neck of the hourglass of the whole model.
On the highest level, there are various applications such as web browsers and e-mail
readers, which, in turn, can utilize TCP and User Datagram Protocol (UDP) on the
transport layer below for controlling the Ćow of data transmission. This TCP/UDP
data traffic can then use IPv4 and IPv6 beneath it for addressing and routing [20].[19]

Figure 2: The TCP/IP network model

With TCP/IP protocols, transmitted items are usually data packets, such as IP
packets or UDP packets, or IP and UDP datagrams for alternate term, and a common
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acronym for these data transport units is Protocol Data Unit (PDU). On the link
layer below IP, the computer handling the data transmission directs IP packets to
an Ethernet connection or to wireless radio connection for example, as link layer
has usually protocol access to the next entity or hop in the network. Link layer
protocols, such as Institute of Electrical and Electronics Engineers (IEEE) 802.3
with Address Resolution Protocol (ARP) can direct data to this next hop via some
physical medium such as data cable that is essentially abstracted to this layer [21].

The process of transferring data by the sender towards the destination is done by
encapsulation of data where a protocol in a layer in the TCP/IP model adds header
and possibly footer information to the data as it moves downwards. In reverse,
when data is moved upwards from lower layers, the header and footer information
is peeled off, layer by layer, by de-encapsulation until only application data is left.
These headers and footers contain layer-speciĄc control and addressing data that will
actually enable the telecommunication. This process is illustrated by an example
with the TCP/IP model in Figure 3, where some application data is sent through
network utilizing UDP. The application PDUs are Ąrst prepended by UDP headers,
then IP headers with addressing information and Ąnally link layer frame headers and
footers that contain information on how to reach the next hop in the network via
physical medium. After possibly traversing through various network nodes that likely
do de-encapsulation and encapsulation on their own, the receiver gets the sent data
packet which will go through the de-encapsulation process that yields the relevant
application data to the destination program.[19][3][11]

Figure 3: Encapsulation and de-encapsulation of network data

With the TCP/IP application layer abstraction, the application data can be arbi-
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trary, and in practice it varies as web page content can be text, pictures or video,
all of which can be transferred with HTTP for example on top of the lower layers.
The application layer can also contain session and security management protocols
such as Transport Layer Security (TLS) protocol which is used for data encryption
and for access control. The application layer also includes sockets which act as a
logical connection point between programs and the Operating System (OS) to enable
network connections. [11][19][22]. In regard to more speciĄc information about TCP,
UDP and IP headers below the application layer, they can contain error-correction
information and checksums to make it possible to notice data corruption or other
problems that could happen on the route from source to destination. More impor-
tantly, IP headers and the frame headers on the link layer contain address information
which will be used to look for the correct destination for a speciĄc packet, either
in the global Internet in the case of IP or in the local network in the case of frame
headers which can utilize machine-speciĄc Medium Access Control (MAC) addresses.
[11, pp. 368Ű482]

There are some negative sides in practice related to relying just on IP on the Internet
layer and doing de-encapsulation of data on the routers. As IP has spread all over the
Internet, the limitations and problems it may have do affect pretty much everybody.
This can be seen especially with IPv4 as it has only limited space for adding additional
complexity and functionality to the protocol. It is also difficult and costly to do
large upgrades to the Internet layer protocols as they must be enacted on so many
entities. When data is forwarded deeper and deeper into the network towards distant
destinations, there are no guarantees that all routers handling the data act optimally
or even in a benevolent manner. It is possible that routers could de-encapsulate
data further towards application layer to gather sensitive user information such as
passwords as they certainly have the capability of parsing TCP, UDP and HTTP
protocol messages for example, instead of just routing the data forward. To have
some safeguards against this kind of behavior, it is generally not legal in Europe for
the ISPs to read the payload of TCP and IP packets for example. With vast array
of routers in the Internet, problems may emerge even if the routers are conĄgured
properly to do what they should. For example, routers may get congested and start
dropping packets due to technical failures or abnormal amounts of data traffic.

It is also possible that security issues reside below the Internet layer, such as with
ARP spoofing, where Ťto spoofŤ generally means to fabricate communication nodesŠ
source addresses. A hostile entity could use spooĄng to masquerade as another
machine and receive data traffic that is intended to reach somebody else. The ARP
spooĄng speciĄcally could be enabled by network nodes accepting and caching ARP
address data too leniently, where attacker can inject falsiĄed information to nearby
network nodes.[23] These types of activities are usually called Man-in-the-Middle
(MitM) that are also possible with IP, perhaps in conjunction with ARP spooĄng.
The malicious node could masquerade to be the IP destination in order to falsify data
traffic and to draw out sensitive information from the sender. To defend against this,
at least with the end-to-end principle, safeguards are generally expected to be at the
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end points of a connection. Normal, connectionless IP data traffic requires that at
least the originator of traffic uses some protocols or applications above the Internet
layer if he wants to ensure that legitimate destination has been reached. The sending
party can create, for example, a connection-based TCP session with the other end
point where some assuring replies from the intended destination are received. On
the other side, servers could also require these sessions to be set up so that they can
ascertain client legitimacy with the ongoing request-response type messaging. As
untrustworthy routing entities could wiretap ongoing data traffic in some cases, there
are application layer protocols widely in use to boost telecommunication security.
One example is the Hypertext Transfer Protocol Secure (HTTPS) which utilizes
Secure Sockets Layer (SSL) security suite or its newer version TLS. HTTPS can
be used to encrypt data traffic so it cannot be deciphered fully without proper
decryption keys and also to authenticate the entity that is communicated with.[11,
pp. 763Ű799][24]

2.1.2 IPv4 and ICMP

The basic addressing and routing on the Internet are based on IPv4 and IPv6 ad-
dresses, where a node in the network has one or more of these addresses so it is
reachable. With the more commonly used IPv4, this address is a 32-bit value that is
usually depicted as a set of four 8-bit values separated by dot notation. The four Ąelds
of an example IPv4 address Ť123.71.0.226Ť have 8-bit values ranging from 0 to 255.
Nowadays the IPv4 routing is done using Classless Inter-Domain Routing (CIDR)
with Variable-Length Subnet Masking (VLSM) which introduced the CIDR-notation
for depicting IP address ranges with subnet mask length. An example IPv4 address
range Ť123.71.0.0/16Ť in CIDR-notation would mean that subnet range contains 2 to
the power of 16 or 65536 addresses as the number 16 behind the slash-character implies.
In the simplest case, the mask size 32 denotes a single IP address. In routing decisions,
different size net masks can be used in bitwise comparisons to check if the destination
address belongs to a speciĄc range of addresses and should therefore be directed
towards the connection that is linked to this range of addresses.[4][11, pp. 572Ű601][25]

With IPv4, the address range is limited to 2 to the power of 32 (around 4,3 billion)
different values, where several sub-ranges are reserved for special use. These IPv4
address ranges are presented in Table 1. To help circumvent this limitation, private
networks can set up NAT boxes between their network space and the public Internet,
where private addresses from the range Ť10.0.0.0/8Ť for example, which are supposed
to be kept out of the public Internet, are mapped to the public IP address of the
NAT server. This is a very common usage case for private address ranges, but
naturally there are other uses such as setting up totally detached private networks,
where the private addresses are easily distinguishable from the public IP addresses.
Additionally, reserved addresses include loopback addresses to help with system
testing, multicast address range and ranges for speciĄc test and demonstration setups,
among other things.[26]
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Table 1: Special IPv4 addresses

Address block Scope Description
0.0.0.0/8 Software Current network descriptor
10.0.0.0/8 Private Network address space for private use
100.64.0.0/10 Private Shared communication address space

between ISPs and clients
127.0.0.0/8 Host Loopback address space
169.254.0.0/16 Subnet Link-local addresses
172.16.0.0/12 Private Network address space for private use
192.0.0.0/24 Private IETF Protocol assignments
192.0.2.0/24 Documentation Addresses for testing, documentation

and examples
192.88.99.0/24 Internet Reserved for future use
192.168.0.0/16 Private Network address space for private use
198.18.0.0/15 Private Reserved for testing
198.51.100.0/24 Documentation Addresses for Testing, documentation

and examples
203.0.113.0/24 Documentation Addresses for Testing, documentation

and examples
224.0.0.0/4 Internet IP multicast
240.0.0.0/4 Internet Reserved for future use
255.255.255.255/32 Subnet Limited broadcast address

The PDU of IP is a data packet or datagram that contains an IP header at the
beginning and the data payload after it, which is essentially the data to be transferred
that is received from the upper TCP/IP model layers. The IPv4 header structure is
presented in Figure 4. The most important Ąeld in the IPv4 header is the destination
address, as routing is done using it. The additional relevant header Ąelds are described
below:

• Version Ű The version of IP the packet uses

• IHL Ű Internet Header Length (IHL) which denotes the length of the IP header

• DSCP Ű Differentiated Services Code Point (DSCP) which can be used for
Quality of Service (QoS) control in some cases; if QoS-control is implemented,
it can be used to differentiate packets into levels of resource access for example,
where one type of packet is prioritized above others in the case of heavy traffic
load

• ECN Ű Explicit Congestion NotiĄcation (ECN) which can be used to notify
routers about network congestion
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Figure 4: IPv4 packet and header format

• Total length Ű The length of the whole IP packet

• IdentiĄcation, Flags, Fragment offset Ű These are used to identify and manage
fragmented IP packets

• Time-to-Live Ű Time-to-Live (TTL) denotes how many hops the packet is
allowed to travel before router drops it; this value is decreased by one by each
router that handles the packet

• Protocol Ű Denotes the protocol of the payload such as TCP or UDP

• Header checksum Ű This is used to check that received header is valid

• Possible Options Ű These could be utilized for traffic engineering for example
but they are rarely used.

The IPv4 header offers some options for managing traffic congestion and the QoS.
The latter connects to network delays and bandwidth requirements and denotes a
service level where a client for some speciĄc service can use it with acceptable quality.
The problem arises from the fact that utilizing these options may require support
from the whole underlying system which may not be possible in diverse networks
without central control. There is also a problem with the limited space in the IPv4
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header, even with the possible additional options, which makes large scale extension
of functionality difficult. It is good to notice that checking IPv4 header validity is
done by calculating a checksum value from the received packet header and comparing
this to the value in the header checksum Ąeld. This means that malicious router
could manipulate the IP header beyond adjusting the TTL, calculate a new checksum
to be added to the header and pass this packet onwards. Probably the largest issue
with improper use of IPv4 is the possibility to change the IP source address to an
arbitrary address, though, as the source is generally not utilized in the connectionless
IP routing.[4][11, pp. 572Ű601]

As IP itself doesnŠt offer that much support for monitoring network status, the
Internet protocol suite includes Internet Control Message Protocol (ICMP) that is
used mainly as a diagnostic tool to help with network infrastructure upkeep where
ICMP messages can notify network nodes about problems or malfunctions. Very
common use for ICMP is that intermediate network nodes send ICMP replies to
standard IP data packet traffic instead of routing it forward if they encounter errors.
The originator of the IP traffic can then react to these replies when it can identify
the problem from the ICMP message error codes. Even though ICMP is considered
to be an Internet layer protocol, it works over IP, but it is usually handled more
directly by the particular network nodeŠs OS. ICMP responses could be sent quickly
based on preset procedures without forwarding data to sockets for example. ICMP
can be very helpful when setting up routing infrastructure and private networks to
ascertain connectivity as it can be used to send echo messages by ping-command
with most OSes, where basic ICMP reply is expected, if there is an IP connection
between the nodes.[27]

In regard to IPv6, there was and is a need to upgrade the basic Internet building block
of IPv4 due to protocol design issues such as the limited global IPv4 address range.
IPv6 was developed to solve these problems with having the option to run IPv4 and
IPv6 in parallel during transition and upgrading period, where tunneling techniques
can be used to send traffic through mixed networks. This process of replacing IPv4
with IPv6 altogether has been quite slow, however. Even at the time of writing this
thesis, 20 years after the IPv6 inception, the IPv6 deployment rate is still only 25%
which denotes the ratio of devices that advertise IPv6 connectivity in the global
Internet [28]. The IPv6 adoption rate is increasing slowly, though. Basically, IPv6
offers far larger address space and extensible IP packet header structure that enables
far more protocol options than IPv4. As is discussed later in this chapter, IPv6 does
suffer from possible source IP address forgery similarly to IPv4, so this thesis uses
IPv4 in the discussion and testing for simplicity. Possible solutions here can then be
expanded to IPv6.
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2.1.3 TCP, UDP and network ports

As IP is a connectionless protocol, ensuring reliable connection in some manner is
left to the transport and application layers above the Internet layer. Applications
and devices that utilize Internet vary, however, so there are lots of uses for less
reliable and thus less demanding communication schemes too. Additionally, there
is the need to differentiate multiple services that are available behind a single IP
address. For this, and for establishing common practices if and where certain types
of services are available on a web server, computer operating systems utilize port
numbers that range from 0 to 65535. New connections to a server are made using
pairs of port numbers and IP addresses, which direct the connection to the correct
service within. With the TCP/IP encapsulation, the destination and source port
numbers are included in the transport layer header data. The IP address related
to the web service and the port are then bound to speciĄc program sockets on the
application layer, and these sockets can direct data traffic to the correct program.
When describing IP addresses and related ports, the port number is often tagged
after the IP address, separated by a colon-character.[11, pp. 34Ű96]

Web servers and related services which are for speciĄc purpose are usually set to listen
established port numbers which are coordinated by the Internet Assigned Numbers
Authority (IANA), so that clients generally know which port to connect to when
trying to reach a certain service such as HTTP server for example. The important
transport layer protocols that carry port information in their headers are UDP and
TCP, where UDP is connectionless and lightweight and TCP is connection-oriented,
more reliable, but also more complex. Services that use well-established ports with
UDP and/or TCP include Secure Shell (SSH) which mostly uses TCP and listens on
port 22, DNS which usually uses UDP and listens to port 53 and HTTP which can
use both UDP and TCP, depending on the demands of the content and connection,
and listens to port 80 [29]. Setting the port to some predetermined value is often not
required on the client side, as clients can choose an arbitrary, available port number
for the connection in their respective system, especially when multiple, simultaneous
client-server type connections are to be made to various outside servers. As an addi-
tional note, continuous packet Ćows from a single source towards some destination
that utilize some common protocol such as UDP or TCP are often called traffic Ćows
or network Ćows, from which a term Ćow is a shorthand [30].

Using UDP and TCP works in the same manner as using IP in the sense that they
add header information to some upper level payload data, which is then used in
the encapsulation and de-encapsulation process. The comparison of UDP and TCP
headers is presented in Figure 5. The UDP header is quite simple as it only has
source and destination port numbers, length denoting how long the whole data packet
is and optional checksum Ąeld that may not even be in use with IPv4. This makes
UPD packets fast to process, but dealing with possible errors such as lost or delayed
UDP packets or corrupted data is left to upper layer protocols and applications.
These entities may then skip doing any corrections at all, if certain percentage of
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lost packets would not affect the quality of service noticeably. Perhaps the most
common uses for UDP are simple one request-one answer type services such as DNS
[12], where both requests and replies are quick to process and just re-sending queries
will usually solve issues caused by lost packets.[20]

Figure 5: UDP and TCP headers

Often network services demand that the transmitted data is without faults, arrives in
correct order and does so in a limited time-frame, all of which place more demands
on the protocol in use. Generally, in the transport layer, TCP Ąlls this role. As is
presented in Figure 5, the TCP header has a structure which includes Ąelds for data
sequencing, error checking with checksum and overall connection management and
Ćow control with various Ćag options and protocol timing window size adjustment.
The basic idea of TCP is to be a connection-oriented, stream-based protocol, where
connection setup is done with the initiator sending TCP messages with Synchronize
(SYN) Ćag on, in the Flags and data offset Ąeld, to notify that it wants to establish
connection. The receiver would then respond by sending a TCP message back with
the SYN and Acknowledge (ACK) Ćags on to note that it is ready to proceed. Finally,
the initiator should then reply with a TCP message with the ACK Ćag up, and
after this is received, the actual data transmission can proceed. This procedure is
presented in Figure 6. TCP uses the acknowledgement number and sequence number
Ąelds to ensure connection validity, as, for example, the protocol checks with these
Ąelds that the Ąnal ACK reply from client is connected to the correct SYN-ACK
message. The TCP connection tear-down has similar request-response procedure
with different Ćag values, whereas the actual data transfer happens in a streaming
manner, where a sequence of data packets is sent, in order, towards the destination.
The sequence numbering and checksums are used here to notice errors and if, for
example, one data packet is corrupted, the receiver can ask for a re-sending of this
data that has the speciĄc sequence number. In addition, the window size Ąeld and
acknowledgement messages during the stream are used to manage the rate of data
transmission, as the connection may get congested or one endpoint may need to limit
incoming traffic if it suddenly needs to process something else.[11, pp. 602Ű620][16]
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Figure 6: TCP connection establishment

In the security context, with connectionless UDP on top of IP, the issue of source
address spooĄng remains, as UDP isnŠt concerned about the IP attributes on the
lower layer. This means that servers that offer UDP-based services may receive
bogus traffic, where the originator of these messages doesnŠt care about the reply,
as it doesnŠt usually even have access to the forged IP source address. This kind
of traffic, which is essentially a part of a DoS or DDoS attack, can be problematic
to defend against. Attackers can vary the IP source address which makes Ąltering
just few source addresses inefficient if one wants to weed out malicious clients. One
countermeasure would be in these cases to block incoming UDP traffic altogether, but
that will block legitimate users as well. On the other direction, UDP itself doesnŠt
offer any protection against entities on the data traffic route that sniff out packet
contents and perhaps send forged replies to UDP messages if they are able to respond
before or instead of the actual target UDP server.[31]

As TCP utilizes the three-way handshake when setting up the connection, there is
an assurance that the initiator of the connection is actually there, if he responds to
the SYN-ACK message with ACK. TCP too has the downside of receiving bogus
traffic, though, as malicious clients could just send SYN-queries to try to drain server
resources without handling or caring about the SYN-ACK responses. Another down-
side of TCP is the additional complexity compared to UDP, where establishing and
maintaining TCP connections uses more computational resources, which can make
DoS- and DDoS-attacks towards TCP servers even more damaging. Similarly to UDP,
TCP traffic can be examined and parsed by malicious entities on the communication
route, and on there, the possibility exists to disrupt or even hijack the TCP stream
if an eavesdropper injects packets to the stream that match the sequence number in
use at that point [32]. For resolving the security risks involved in unknown entities
de-encapsulating and exploiting data payloads, both UDP and TCP generally rely
on upper level protocols for data encryption and for authentication.[11, pp. 763Ű799]
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2.2 Routing in the Internet

In the global Internet, there are often lots of intermediate nodes between peers that
wish to communicate with each other. The Internet addressing is done with IP,
and the IP addresses are then used in routing decisions to direct traffic to a correct
destination. This task is the responsibility of routers which are usually intermediate
servers on the network, managed by ISPs, and designed for this speciĄc purpose. The
working principle of routers is that they reside on the borders of different network
segments while having interfaces connected to each segment. Generally, within a
small local network or network segment, the data is forwarded to destination by
broadcasting queries on the link layer about who has the destination address, for
example with ARP in the case of small Ethernet networks. When affirmative reply is
then received, the data can be sent to the destination directly. When a client within
a segment wants to connect to a peer residing on a different network, the data is sent
to a default router which will look up the destination address from the incoming IP
data packet header and look for a corresponding entry in its routing table. This table
contains information where to forward the packet based on its destination address,
and the router can then forward the packet either directly to the destination, if it
happens to be on the very next network segment, or to subsequent router which
knows a route further towards this destination.[3, pp. 56Ű108]

As network sizes and demands on the routing procedures vary on the Internet, there
are differing options available for the routing protocols. These protocols decide how
to formulate and maintain the routing tables, how to direct traffic based on these
tables and how to inform other routers about routing server status and routing
table data changes if necessary. Generally, the routing process demands reliable
exchange of network topology information between the routers, so request-reply type
peer validation and error correction are in use for example with utilizing TCP for
communication. Example protocols which are presented in this section to advance
understanding about routing principles are Routing Information Protocol (RIP) and
Open Shortest Path First (OSPF) protocol, which are generally for smaller scale
networks, and Border Gateway Protocol (BGP), which is used for routing between
larger networks. Currently with RIP, the protocol version in use is 2, with OSPF it
is 2 (for IPv4) and with BGP it is 4.[13][33][34]

2.2.1 RIP and OSPF routing

Although both RIP and OSPF are usually meant for small and medium scale net-
works, they do differ in working principle. Essentially RIP is simpler, less complex
and uses distance vector routing, but it has several limitations. OSPF, on the
other hand, is more complex and heavier link state protocol with added routing
functionality. The main differences between the two are elaborated further in Table
2. One important common quality for most routing protocols is that they need to
use IP-based communication to exchange network topology data which is the case for
both RIP and OSPF and which also means that they are application layer entities in



31

some sense. [3, pp. 142Ű194][33][34]

Table 2: RIP and OSPF comparison

RIP - Distance vector OSPF - Link state
Routing type: Hop count based Routing type: Link cost based, where

variables could be used to calculate
routes beyond hop amount

Routing table: Contains hop counts
to different destinations which are up-
dated based on distance vector messages;
these are periodically sent by neighbor-
ing routers and contain their current
routing tables

Routing table: Routers have a link
state database which has data about the
whole network topology and the routing
tables are calculated from this database;
only changes to this database due to
network changes are sent as updates to
other routes

Max. network size: 15 hops Max. network size: No strict limitations
Routing algorithm: Bellman-Ford Routing algorithm: Dijkstra
Network topology: Flat Network topology: Supports hierarchi-

cal networks
Resource use: Uses less memory and
processor resources

Resource use: Uses more memory and
processor resources

Convergence time: Slow Convergence time: Fast

Showcasing RIP and OSPF illustrates differences on how routing information is set up
and transferred between routers, but the exact workings of these protocols is not the
focus of this thesis. RIP and OSPF are however discussed in more detail in Appendix
A, mainly to offer contrast to BGP routing which is elaborated on later in this chapter.

It is also good to note routing in the cybersecurity context. No matter what routing
protocols are in use, routers play a big part in functioning networks, as they are the
central nodes through which most of the of data traffic Ćows through. Malfunctioning
routers could mean for example that sections of the network are cut off or that parts
of the network retain too much data traffic, where processing this traffic takes lots of
resources. As both OSPF and RIP routing tables are updated by messaging over
IP, there are potential security issues similarly to other communication processes
over IP. The update messages could be eavesdropped, and it is possible that IP and
ARP spooĄng could be used to inject falsiĄed messages to the network. If routing
tables are compromised, the routing process as a whole suffers dramatically, as data
could be routed to a black hole address which essentially leads to nowhere, or as all
data could be routed speciĄcally towards one destination to cause a DoS-attack. For
security, OSPF and RIP for example can enable message authentication and encryp-
tion for routing table update messages which helps routers to reject false updates.
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Routing software bugs and poor conĄguration could still lead to compromised routers,
though, especially if the security settings are not managed properly. Additionally, as
network bottlenecks, routers themselves are susceptible to DoS- and DDoS-traffic
which could Ąll the routersŠ network links and would then delay, if not prevent, all
ongoing legitimate data traffic.[35][36]

2.2.2 BGP

As OSPF and RIP have scale limitations, there is a need for a solution to connect
multiple smaller network segments together to form the Internet structure of network
of networks. The routing protocol for this purpose is BGP, which routes data between
Autonomous Systems (AS) that are network areas containing sub-networks, where
routing could be done with OSPF or RIP for example. Figure A4 in Appendix
A illustrates how BGP router could be connected to OSPF routing infrastructure.
There, the router acts as a gateway to outside Internet and directs traffic in by aggre-
gating and advertising the internal network to its Internet routing peers. Especially
with BGP routing and related address aggregation, this process involves sending
out summarized entries about large network ranges that are called IP preĄxes that
describe the network part of the IP address utilizing the CIDR notation network
masks.[3, pp. 239Ű279][13]

The BGP is based on path vector routing, which is an advanced version of distance
vector routing that tries to negate loops while also limiting the routersŠ computa-
tional load when the network grows in size. The principles of path vector routing are
shown for a small, simple network in Figure 7, where instead of just communicating
hop counts to destinations, the path to this destination is also conveyed. In the
example, the simpliĄed routing table of R4 is presented when the network topology
data has converged, which shows that the table maps destinations to the best link
cost and the respective path. This data would be then sent to neighbors in path
vector type update messages which for R4, in the example, would contain destination
nodes and the respective link costs, path lengths and list of nodes in the path. It
is easy to see that routers can discard incoming path vectors that contain routes
which have loops, as they see the whole path and can deduce if a route leads back
to the router itself for example. In the case of broken links, the relevant router
would then just send path vectors marking the link inaccessible, which would then
propagate new paths throughout the network, similarly to distance vector routing
update process. It would also be possible to cache multiple routes to the same
destination for a quick, smooth change of path in the case network topology changes,
while the trade-off being increased overall converge time. With BGP, one difference
to the aforementioned simple example is that the link costs are implicitly set to 1 for
hop-based routing, where there is a lot of added complexity elsewhere in the protocol
to facilitate preferred route selection, among other things.[3, pp. 93Ű102][13]

An example network structure where BGP is used is illustrated in Figure 8. The
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Figure 7: Path vector routing example

basic building blocks of this architecture are the AS entities which are domains
with an unique ID value and who are under a common routing policy. Usually each
AS is controlled by a single ISP or a group of ISPs that share common goals and
Ąnancial ties, which then enables the intra-AS routing setups to follow some shared
conĄguration ideas and purpose. The AS identiĄers are managed by IANA and
are called Autonomous System Numbers (ASN). During the network setup, these
numbers are allocated to each AS by the ISP that has control over it. ASNs are
32-bit numbers which denote the node identity, similarly to the router names in
Figure 7.[37] These AS nodes then have substructures that can include multiple
smaller networks whose IP preĄxes are aggregated and advertised to the Internet
by the exterior BGP routers (eBGP) that reside on the borders of the AS. If there
is just one border eBGP router with the AS, the intra-AS routing could be done
purely with Interior Gateway Protocols (IGP) such as OSPF or RIP. With the eBGP
advertisements, the AS number respective to the IP preĄx is also sent to connect the
two and the eBGP routers will then send and receive these messages to have an idea
about the IP preĄxes and connected ASNs that can be reached in the whole network.
In the case of AS having multiple eBGP routers that connect to different networks,
the eBGP advertisements are sent through internal BGP (iBGP) routers, as more
complex path vector messaging needs to be forwarded through the AS, which cannot
be done with the standard IGPs.[3, pp. 239Ű279][13]

The actual BGP routing process is done by the BGP peers establishing a perma-
nent TCP connection between each other to communicate their capabilities and to
exchange IP preĄxes and respective paths which are available through them. Each
BGP router maintains these TCP connections for each of its peers and regular Ťkeep
aliveŤ messages are sent to notify the peer that the other end is still in operation.
If the connection breaks and if re-connection doesnŠt succeed, the broken path is
then communicated to other peers. In the case of iBGP, there is a problem of loop
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Figure 8: BGP routing and autonomous systems

formation as routers need to omit ASN data from the update messages to differentiate
iBGP routing and eBGP routing in a simple manner. This means that iBGP routers
cannot advertise iBGP routes to each other, but they still need to be able to advertise
eBGP routes between them, which leads to connecting all iBGP routers to each other
or using methods like BGP confederations or BGP router reĆectors to divide the
AS to smaller segments. Overall, even with the iBGP routers residing in the AS,
the internal routing is generally done with IGPs which communicate their routing
information to the BGP routers if necessary.[3, pp. 239Ű279][13]

2.2.3 Policy routing, BGP communities and BGP security

The routing with BGP goes beyond just forwarding data traffic to the next hop
on the shortest path to the destination. BGP routers maintain separate adjacent
Routing Information Base In (adj-RIB-in) data structures for each of their peers,
which contain the network topology information received from the respective peer.
The routers also maintain a separate local Routing Information Base (loc-RIB) data
structure for the actual routing decisions. In addition, the BGP routers keep up
adjacent Routing Information Base out (adj-RIB-out) data structures for adjusting
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what data they send to the respective peer. The BGP router uses information
from adj-RIB-in with its own set of policies and Ąltering rules to add information
to the loc-RIB. This procedure can set preferences for using a particular route
over another, Ąlter out IP preĄxes which are not to be propagated or Ąlter out a
speciĄc AS altogether, if it is a private AS number for example. BGP can also
apply these kinds of adjustments and Ąltering to the outbound traffic, based on the
rules on adj-RIB-out, to limit what router actually advertises to its peers. Gener-
ally, this concept is called policy-based routing, where other factors are taken into
account for routing in addition to the IP destination address of a packet. This type
of routing is facilitated by BGP sending speciĄc path attribute data in the path
vector updates to note route preferences and various other metrics.[3, pp. 239Ű279][13]

One useful path attribute with BGP messaging is the communities attribute. Es-
sentially this attribute is a 32-bit value tag, split into two 16-bit values, containing
the respective ASN and speciĄc community identiĄer. This tag can be added to
outgoing or incoming IP preĄx advertisements, and the BGP router handling these
advertisements can then apply rules for the IP preĄx based on the rule set matching
the community identiĄer in the tag. An example use of the community tag with a
well-known community value of ŤNO_EXPORTŤ (or 0xFFFFFF01 in hexadecimal)
is that eBGP routers notice this tag from incoming advertisements from their iBGP
peers and know to not advertise IP preĄxes with this community to their eBGP
peers. An example case of limiting access to speciĄc network within AS to only
limited amount of eBGP peers is shown in Figure 9. There IP preĄx of network 3,
where client 3 resides, is tagged by a speciĄc community tag. The iBGP router 4
would then have rules in place to only advertise this community to eBGP router
3, which in turn knows to advertise the community only to eBGP router 1, which
would not advertise the community further on the wider Internet. This enables the
client 1 in AS 10001 to access client 3 and network 3 in AS10003, whereas entities
in AS10002 cannot do the same, as the respective IP preĄxes are not advertised
there. The functionality of BGP communities has been expanded since the attribute
inception by adding more space to add larger ASNs and type information to the
tag, but the principle of utilizing the actual community identiĄer to enact speciĄc
community policies for respective IP preĄxes remain [38][39].[40]

Policy-based routing is not limited to BGP, as networked computers generally have
routing information in the Forwarding Information Base (FIB) data structures to
know where to actually send data. With Linux for example, it is possible to add
speciĄc rules such as preferential routes to the FIB so that the routing decision would
use other attributes than just the destination address.[41] It is also possible to add
routing policies to work with RIP and OSPF, as the routing software usually has
support for injecting additional routing rule sets to work in conjunction with the
respective protocol. For example, the Quagga routing suite offers a possibility to set
some policies based on matching the packet source, which would enable source-based
routing, where a packet is forwarded to some interface or address based on its IP
source address.[42] In regard to policy-based routing, one important use nowadays
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Figure 9: BGP routing communities example

for BGP routers is the creation of Virtual Private Networks (VPNs) mostly for
enterprises. VPNs in this context are basically detached, encrypted networks that
utilize the BGPŠs Ąne-grained controls, where nodes share data only with trusted
peers in a manner of their choosing.

With security, BGP may run into the same problems with route advertisements as RIP
and OSPF, as the messaging between the BGP peers is done over IP. Advertisements
could be wiretapped, and in the worst case, if two BGP peers communicate over the
same network segment, malicious entity could possibly hijack the TCP connection
between the BGP routers by IP- and ARP spooĄng to inject faulty data to the BGP
routing information bases. As with IGPs, broken or forged routing tables could create
black hole addresses, which lead legitimate traffic to nowhere, or could direct all
traffic to one speciĄc route, which could cause DoS-attacks. Additionally, with BGP,
undesirable routes could be injected to the AS, replacing legitimate routes, so that
outgoing data is forwarded to the wrong destination AS. Overall, issues with BGP
routing could cause more damaging effects compared to IGP routing, as compromised
eBGP routers speciĄcally affect the whole respective AS. Additionally, BGP networks
could have issues with a phenomenon called Ćapping routes, which is connected to
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rapid network topology changes by a link turning on and off in quick succession. At
this point, BGP routers would send update messages notifying peers of withdrawing
the broken route and then, almost immediately, send another message to announce
the route to be on again. These subsequent update messages would then propagate
over the BGP network, and in the worst case, cause performance and availability
issues with the routers while these problematic message are processed.[3, pp. 239Ű279]

There are ways to address route Ćapping and BGP peer connection security, though.
BGP routers can enact timers to limit how many update messages are handled from
a peer in a limited time to dampen the effect of quick succession of updates. For
more reliable BGP peer-to-peer communication, BGPsec can be enabled, where BGP
routers could authenticate each other and also use BGPsec to cryptographically
authenticate the routes they receive from the path vector messages.[43] One major
factor with the general BGP security is the reliance on various operators of BGP
routers to act benevolently or competently. BGP routers could be misconĄgured so
that they are compromised, or a BGP operator that is initially trusted may decide to
inject problematic routes to peers or block network access suddenly due to Ąnancial
or political reasons.[44] It is also possible that BGP routing hardware becomes the
bottleneck for some operators, as IPv6 and fracturing of IPv4 network with various
private networks has increased the actual FIB size for BGP routers to a point, where
older routers cannot cope well with the larger network size.[45]

2.2.4 NAT

As the adoption of IPv6 lags and as the limit of IPv4 addresses has been reached
when the size of the Internet has grown especially in India and China, there has been
a need to conjure up new IPv4 network address ranges especially for the growing
markets. Additionally, there is a need in network security context to detach impor-
tant web services or network segments in a manner that unwanted traffic from the
global Internet cannot easily reach these addresses. This is what Network Address
Translation (NAT) methods and private IPv4 address ranges are for. Based on Table
1, few ranges such as 10.0.0.0/8 are allocated speciĄcally for private network use,
which means that entities such as enterprises and organizations could set up their
own private networks, where employees or other stakeholders within these networks
could access services there without having to simultaneously cope with disrupting
data traffic from outside. There is usually a desire to have some access to the global
Internet from the private side, however, as vast array of useful services reside there.
This issue has led to wide utilization of NAT services, that act both as network
firewalls and gateways to other networks. The NAT process can map few or even 1
global IP address of the NAT node to the whole respective private network, which
helps with the IPv4 address amount limitations.[6][46]

The concept of the Ąrewall relates to software that runs within a network node,
monitors incoming and outgoing traffic of the nodeŠs network interfaces and does
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some limiting actions to this traffic if certain conditions are fulĄlled or rules are to be
enforced. Firewall software implementations could be set to work on various TCP/IP
model layers, but usually, at the base level, Ąrewalls monitor the IP data traffic in the
Internet layer. Example functionality with Ąrewalls include dropping certain protocol
data traffic altogether (such as dropping all UDP traffic to the computer), dropping
traffic from a speciĄc IP source address range, or blocking speciĄc outgoing traffic to
prevent the node from broadcasting some sensitive information. Firewalls can be
stateful or stateless, where stateless versions do actions on a packet-by-packet basis
without maintaining information about the data Ćows and where stateful versions
keep up client and connection state information so that, for example, TCP connec-
tions through the Ąrewall can be identiĄed and handled properly. As NAT servers
are placed on the border of some local network, they usually implement Ąrewall
functionality to limit what kind of data is let in through them. It is important to
note that some software running a NAT process may not be a Ąrewall itself, but
often for convenience, servers running NATs will have Ąrewall processes running in
conjunction, which affects how the NAT procedure functions.[11, pp. 763Ű799][46]

To facilitate communication between the private network space and the public in-
ternet, NAT will map private space IP addresses to one public space IP address in
a stateful manner, where the private side client connections are differentiated by
the NAT assigning them speciĄc port numbers. An example of this procedure with
the common many-to-one NAT architecture is shown in Figure 10, where the NAT
has one IP address 192.168.0.1 as the gateway for the private side address space
192.168.0.0/16 to which clients can connect to, and another IP address 100.200.1.1 on
the public side for Internet connectivity. The client 1, for example, could then access
Internet by contacting the NAT, which maps the connection to outside so that the
source address of the IP packet is changed to the public NAT IP address and the IP
header checksums are also adjusted to match. Data traffic is then sent from the NAT
from a speciĄc port, assigned to client 1 here, while the NAT maintains information
about the state of the connection such as the original source port number and the
mapping of the client IP address to public side port value. There could be a need to
do speciĄc Port Address Translation (PAT) methods for how to allocate the outgoing
port value but more importantly, TCP connections may require port preservation
so that the incoming and outgoing connection ports on the NAT match to ensure
that the protocol functions properly. When traffic eventually passes through the
NAT, the connection peer on the public Internet then directs data back towards
client 1 using the NATs public IP address as a destination. While receiving packets
to the aforementioned client-related port on the public side, NAT will then know
the respective client, change the IP destination address back to the private address
space and forward traffic towards the client.[6][46][47][48]

Even though using NATs can help with the IPv4 address range limitation and with
private network security, they have various apparent issues, especially in regard to
the end-to-end connectivity. Some protocols such as Session Initiation Protocol (SIP)
with Voice over IP (VoiP) may break the protocol layer independence and place IP
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Figure 10: NAT as a connector between different networks

addresses on the application level payload that causes this information to be invalid
when NAT changes the IP source addresses, or when IP addresses in some cases
would not be unique. It is also problematic when an entity on the outside wants
to connect to a client behind a NAT or each connection peer is behind a separate
NAT [49]. In a client-server relationship, where only the client resides behind a NAT,
the connection procedure works Ąne as the initiator knows the public IP address of
the actual server, but if the roles are reversed, there needs to be speciĄc support
for connection establishment built-in to the NAT process, or some NAT traversal
methods should be used.[50][51]

If there is a need to include the NATŠs public IP address, connected to the NAT
client, in the IP payload for some application, Session Traversal Utilities for NAT
(STUN) method could be used. With STUN, a client can connect to a speciĄc STUN
server on the public internet, which can notify the client about his public NAT IP
address and port, as it sees the query coming from this address and port [51]. The
issue with all NAT traversal is that NAT implementations and architectures vary
and may not be standardized, which means that NATs may change IP addresses
and ports for clients when they create subsequent connections and thus the address
which the STUN server saw is no longer valid. The option in this case would be to
utilize Traversal Using Relays around NAT (TURN) method, where a relay server on
the public Internet binds a stable IP address and port for each client after they have
connected to the server. The clients are then accessible via these TURN server IP
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address and port combinations. The TURN works better with more NAT implemen-
tations, but the relaying demands far more resources from the intermediate server
compared to the simple query and response process with STUN.[52] For combining
both STUN and TURN methods, NAT traversal could be done with Interactive
Connectivity Establishment (ICE). With ICE process, peers behind different NATs
could gather respective public NAT IP address information to form an address and
port candidate lists with STUN and TURN, which is then signaled to the other peer
via some unspeciĄed means such as via relay. From this address candidate data, ICE
process will then choose the optimal IP and port pairs for the actual data transfer.[53]

Generally, the aforementioned NAT traversal methods enable peer-to-peer communi-
cation through NATs in the case of transferring media, using VoIP or utilizing Ąle
sharing with BitTorrent protocols and similar peer-to-peer sharing schemes, where
there is some initiation from the client behind the NAT. For actually hosting web
services in the private network, which are supposed to be accessible from the global
Internet, the NAT server itself should have rule sets in place to bind a speciĄc public
IP address and port for the private space web service. All incoming traffic to this IP
and port would then be sent to the private side service by utilizing address translation
and port forwarding. Usually connections through the standard one-to-many NAT
are used for a short duration, but hosting services behind the NAT means that
there likely needs to be a stable binding, which clients can connect to and which is
initialized when the private service starts or by some control signaling either from
the private network or from outside.[54]

As NAT masquerades the real IP addresses of clients that reside behind them, people
may make false assumptions that just utilizing NATs is enough for network security.
Unfortunately, this is often not the case and perhaps the most pressing problem
here is that NATs without additional protections offer a good target for DoS- and
DDoS-attacks, as attackers could examine which ports are open at the public side of
NAT and just send bogus data traffic to these ports to drain NAT server resources.
As with routers acting as gateways, bringing down NAT will affect the whole private
network behind it. The second matter is that if the private address space client hap-
pens to connect to some compromised web service, the attacker could send disrupting
data back to the client through the established NAT tunnel. Filtering problematic
traffic either by protocol or source address is a good start to help with these security
issues, which usually means deploying a proper Ąrewall to work in conjunction with
NAT for more reliable and secure network services.

Finally, there is a big question about the role of NATs, when IPv6 deployment
advances. Ideally, IPv6 should make NATs obsolete in some sense, because there
are plenty of IPv6 addresses for everybody. With the deployment itself, some secu-
rity issues can come about such as client IPv6 addresses being exposed if security
measures are not properly conĄgured when NATs are used for IPv4 addresses with
enabling IPv6 connectivity for some dual-stack conĄgurations [55]. There are also
several big threats to network security when IPv6 has actually replaced IPv4. If
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there is no security-minded network separation, a serious problem will likely be the
possibility to utilize vast amounts of IPv6 addresses easily as sources for DDoS-
attacks towards a wide range of targets. Another big problem in this case could also
stem from the limited security solutions for various, simplistic mobile devices in the
global IPv6 Internet. These devices cannot run complex security software due to
resource consumption considerations with limited batteries, which could then lead to
the devices being easily hacked and exploited for generating DDoS-traffic for example.

2.3 DNS

For most people, the numerical strings of IPv4 addresses and especially IPv6 addresses
might be quite difficult to memorize and use in practice, when, for example, one
wants to connect to some web service by giving the respective address as an input
to the web browser. Additionally, it is difficult to add semantic meaning to these
values, which would connect the speciĄc IP address to the purpose or to the operator
of the website. These are the main reasons Domain Name System (DNS) has been
adopted, where textual domain names, which are more easily understood by humans,
are used in identifying and contacting web services. After the domain name has
been given to the query-response type DNS resolving process, it is translated to the
IP address of the corresponding web service and the actual data communication
can begin where the resolved IP addresses are used. Usually, with web browsers for
example, this address translation is done automatically and is hidden from the user,
so he only needs to input the domain name to the browser to contact a particular
web service.[12][56][57]

2.3.1 Principles of DNS

The domain names, which should be familiar to most Internet users, are text
strings which contain text labels separated by dots such as Ťwww.example.comŤ
or Ťsuomi100.demo-site.ĄŤ. There are restrictions on these names such as basing the
string encoding to American Standard Code for Information Interchange (ASCII)
and limiting the character set to include only letters, digits and hyphen. There
are also size limits to these names as maximum size per label of 63 octets and the
maximum size of the whole string of 253 ASCII characters. The varying labels on
the domain name denote different stages of autonomy or authority in the Internet,
where these different labels form a tree-like structure which is illustrated in Figure 11.
Each label essentially identiĄes a section, where some managing entity has control
over that section and the authority structure below it, all the way to the leaf nodes
of the DNS hierarchy tree. The concept of DNS domain is often synonymous with a
DNS zone, although the latter is used more in the technical context when deĄning
how to handle DNS database actions. Usually the authority is delegated from the
higher-level DNS zone to the lower-level, so that the lower lever authority has full
control over the respective DNS zone. This delegation chain then goes on until the
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DNS leaf node is reached.[12][56][57]

Figure 11: DNS authority structure

With DNS resolution process, the goal is to resolve the IP address connected to
the domain that was given as an input. Usually this is a Fully Qualified Domain
Name (FQDN), which is a domain name string that has all the labels for respective
domain name without omissions. The Ąrst step of the resolving process would lead
to asking the highest authority, or the root authority, on the tree-structure about the
FQDN. The root authority is commonly marked as a dot, which is included in the
FQDN in the actual querying process, but this is usually appended automatically
to outgoing queries by the querying application, so it doesnŠt confuse users. For
example the actual transmitted DNS query for domain Ťwww.google.comŤ would be
Ťwww.google.com.Ť as it should initially go to the root, even if users usually give only
the former as an input. In the aforementioned Figure 11, for resolving IP address
to domain Ťwww.example.comŤ, the root has knowledge about Top Level Domains
(TLD) such as ŤcomŤ or ŤnetŤ and it can then direct the query to this speciĄc domain
authority. The TLD authority can then direct the query to second level authorities,
where companies, organizations and even normal Internet users can purchase domain
names to their web services. The domain name authority chain can then go on if
the second level domain names need to have further subdomains, but eventually
there is a Ąnal stopping point, where the authoritative entity has the mapping of the
domain name to the relevant IP address, which is then conveyed to the DNS query
originator.[12][56][57]

The entities who actually respond to DNS queries are called DNS servers, whereas the
querying clients are called DNS resolvers. In the common use case of resolving a DNS
domain name with a web browser, the DNS resolver is usually an ancillary process for
the browser on the clientŠs computer that contacts DNS servers and then responds to
the browser with the resolved IP address, if the DNS query was a success. DNS servers
maintain a distributed database about the mapping of domain names to service IP
addresses, where a server can be marked to be authoritative for a speciĄc domain or
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DNS zone, which is a more common denominator, when DNS database structure
is discussed. This basically means that the server can actually respond to queries
about domain names within its zone with an IP address, as it has this information
in its database. The role then for non-authoritative DNS servers is to direct queries
further in the DNS hierarchy towards this authoritative DNS server. The querying
processes can be either iterative or recursive which are compared in Figure 12. With
recursive process, the DNS resolver within the clientŠs computer queries the local
DNS server for some address that then queries entities on various level of the DNS
authority hierarchy, layer by layer, until it is directed to the actual authoritative DNS
server related to the FQDN of the query. It then receives the answer from this server
which can be relayed to the client. In the iterative process, the local DNS server will
respond to the query by relaying the address of the root DNS server, and the layer by
layer querying process is done by the clientŠs DNS resolver instead, until it receives
the actual answer from the same place as it was retrieved with recursive query. It is
good to understand that recursive queries are more taxing for the DNS system, so
the use of recursion is often limited. In most cases DNS client would be allocated a
ŤlocalŤ DNS server by his ISP (the leftmost DNS server in Figure 12), which is likely
the only DNS server that would do recursive queries on behalf of the client. These
imposed limitations make the whole DNS system more stable, though, as root servers
can accept aggregated queries from trusted lower-level DNS servers and can Ąlter out
iterative queries from unknown sources for example. With problematic DNS queries,
it is important to note that recursive queries going through the ŤlocalŤ DNS server will
not convey the source address of the original query. This can make it more difficult
to Ąnd the real source of troublesome queries deeper in the DNS system.[12][56][57][58]

The root domain and TLDs are under the control of Internet Corporation for As-
signed Names and Numbers (ICANN), and the domain name always has a TLD
label which is the rightmost text tag in the FQDN. TLD name list is relatively
rigid and names usually link to either somewhat vague purpose of the domain such
as ŤcomŤ for commercial websites and ŤorgŤ for organizations, or to country code
denoting the actual location of the domain such as ŤĄŤ, ŤseŤ or ŤdeŤ for example
(for Finland, Sweden and Germany respectively). On the second domain hierarchy
level and beyond, names can be based on company names, products, location names,
etc., where the domain name choice is relatively free. Obviously, most web sites
desire domain names that can be semantically connected to their actual purpose.
The distribution and registration of these names below the TLDs are done by do-
main name registrar entities which have received authority for this from ICANN.
Usually, the Ąnal, leftmost identifying label of a FQDN, which actually ends up
pointing to some network node, is called a hostname, and in many cases, network
users create hostnames for some new service, which are then added to work under
a speciĄc domain. As a simple example, when a client wants to add a new service
to the Internet, which should be accessible by FQDN Ťservice1.example.comŤ, he
can contact the domain name registrar responsible for the Ťexample.comŤ domain,
who can then add the label Ťservice1Ť (hostname) to be a part of the DNS database,
assuming that the client has provided an IP address to be connected to the new
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Figure 12: DNS querying processes

domain name. This IP address can then be retrieved by querying the authoritative
DNS server of the Ťexample.comŤ domain with FQDN Ťservice1.example.comŤ.[56][59]

Additional important features of the DNS system include caching of answers and
ability to do reverse address lookups. DNS resolving process could include multiple
consecutive queries to different level DNS servers, which add delays to the whole
process and can demand lot of resources from the higher-level servers. The DNS
database contains information on how long various answers should be cached further
on the DNS system, which is then noted by the intermediate DNS server when it
receives an answer for the Ąrst query for the respective domain. In Figure 12, with
recursive query, caching the answer in the local DNS server would save a lot of time
and effort if subsequent queries for the same FQDN are made by different clients.
DNS answer caching is actually the main reason to use recursive queries, as various
intermediate DNS servers could have cached answers at least for reaching the often
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used ŤcomŤ TLD server, which eliminates the need to visit the root. In regard to
reverse lookups, DNS system supports query resolution based on input IP addresses,
where the FQDN connected to the given IP address is returned. Usually the ISPs
which control the respective IP ranges will delegate the reverse DNS lookups to the
relevant entities in the DNS system. Note that while reverse lookups can be useful,
they are just an optional feature of the DNS system and an arbitrary DNS server on
the Internet may not support them.[12][56][57]

2.3.2 DNS messages and resource records

The communication in the query-answer type DNS system uses application level DNS
messages that contain data objects called Resource Records (RR). These messages
are sent usually over UDP, where DNS servers generally listen on port 53 for incoming
queries. The DNS message format is presented in Figure 13, where the message
contains a header section and a variable number of RRs. The maximum size for
UDP DNS payload is 512 bytes, where this is added to the header and the total size
is assumed to be below 576 bytes in size, which then enables servers to reassemble
fractured UDP messages, as per the IPv4 speciĄcation [4]. It is also possible to
make DNS queries over TCP, which enables the transmission of larger messages,
although this can be done with UDP too with DNS extensions that specify additional
functionality to the DNS system [60]. As for the purpose for the speciĄc Ąelds in the
DNS message header above the RR data, they are explained below:

• DNS message IdentiĄer Ű This identiĄes the response message for the DNS
client as the DNS query and the respective response should have the same
identiĄer value

• Query or response-Ćag Ű Notes if the message is a query or an response as these
two are the basic types of the DNS message

• Operation code Ű Denotes additional information about the purpose of the
message such as marking it to be a standard query/answer type, a server status
query, a notify or an update message, where the last 2 relate to updating the
DNS server address database dynamically

• Authoritative answer-Ćag Ű Marks the answer to be authoritative which means
that it came from the entity that had authority over the DNS zone respective
to the queried FQDN

• Truncated-Ćag Ű Marks that the message was too long to Ąt in the 512 byte
payload, which usually means that the message should be sent over TCP, which
in turn could be used as a way to make sure that the querying DNS resolver
doesnŠt use forged source address

• Recursion desired-Ćag Ű Asks for the query to be resolved recursively if possible
so that the DNS server in question would do further necessary queries on behalf
of the client
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• Recursion available-Ćag Ű Marks recursion to be available or not on the queried
DNS server

• Status Ű Used in DNS responses to mark if the query was answered successfully
or to note what error occurred if something went wrong; example error codes
include format error where the original query message was malformed or name
error where the queried FQDN was not found in the domain

• The count-Ąelds Ű These denote the count of each speciĄc RR type in the
message RR payload

Figure 13: DNS message header

As was implied on the listing, there are few functions available using DNS messages,
which go beyond the query and response-scheme. Originally, the data on DNS servers
was thought to be relatively static, where the frequency of change could be handled
by just adjusting databases when servers were shut down for maintenance. Later
it became apparent that there is a need also for dynamic updates, as the pace of
change has increased in the Internet. The growing DNS system has also led to
incorporating multiple DNS servers on 1 authoritative DNS zone with the master
and slave structure, where there are backup servers available if the master DNS
server goes down. With the notify operation code, the master DNS server can notify
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and adjust slave servers in the case database changes, whereas the update messages
can be used with Dynamic Domain Name System (DDNS), where the DNS server
databases could be changed quickly and in a lightweight manner, preferably using
automated management clients [61][62].[12][57][63][64]

The DNS domain name and IP address connections are conveyed with DNS RRs,
where these records for a particular DNS zone are contained in the DNS server
database Ąle. In the DNS query process, the DNS server attaches the relevant RR
information from its database to the answer section of the response and possibly
to the authority and additional sections as well. The DNS resolver can then parse
the relevant data from these records on the DNS reply message to initiate the IP
connection. The common DNS RR types are shown in Table 3, where Domain Name
System Security (DNSSEC) note implies that records are connected to optional DNS
security functions. The actual IP addresses are stored in A and AAAA RRs for
IPv4 and IPv6 respectively where, in most cases, this record is returned when a
DNS query comes in for the serverŠs DNS zone. For more advanced use cases, the
Canonical Name (CNAME), Mail Exchange (MX) and Name Server (NS) records
are redirecting records, where they denote aliases, name servers and mail agents
respectively for the DNS zone in question. These types of records then eventually
lead to A or AAAA RRs, where the actual IP addresses for these entities are stored.
How RRs are managed by the server is illustrated in Program Code Snippet 1, which
shows an example DNS database Ąle for the BIND software that is the most popular
DNS server software currently in use on the Internet. As can be seen from the code,
the A records contain the respective FQDN on the left, followed by the class of the
record which is usually IN for Internet, the record type and lastly the respective IP
address mapped to the FQDN. CNAME records are similar, although they contain
the FQDN of the alias, which should be used in a consecutive query, instead of the
actual IP address.[64][65][66]

In addition to storing the address mappings, the RR database Ąles contain an
important Start Of Authority (SOA) record for the DNS zone at the beginning,
which is also shown at the start of the Program Code Snippet 1. This record holds
conĄguration and timer information for the DNS process. The master DNS server is
denoted after the SOA RR type, where the serial value denotes the version of the
Ąle. The refresh, retry and expire relate to the behavior of slave DNS servers on how
often they should query the master for zone updates and how long the records they
maintain are valid without updated data. Lastly, the ttl-Ąeld denotes time-to-live,
where this describes how long the answers from this DNS zone should be cached
further in the DNS chain, although this value could also be conĄgured to each record
individually.[12][66]

One important feature for extending the DNS functionality is the OPT type (pseudo)
resource record which showcases records that are not stored on the resource record
databases but are added to the DNS messages for system signaling and conĄguration
purposes [60]. Expanding DNS also connects to enacting security measures with
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Table 3: DNS resource record types

RR type Purpose
A Stores the 32-bit IPv4 address, usually for some hostname
AAAA Stores the 128-bit IPv6 address, usually for some host-

name
CNAME Alias to a hostname; the DNS lookup for IP address will

continue using the alias
DNSKEY Public key data for validating RRSIG record signatures

(DNSSEC)
DS For identifying the signing key for a delegated zone

(DNSSEC)
MX Mail transfer agent listing with priority information
NS Authoritative name server address for the DNS zone
NSEC Link to a next record name to conĄrm the non-existence

of a record if necessary (DNSSEC)
OPT Pseudo-record for use with DNS extensions
PTR Pointer to a CNAME, where this name is returned but

the DNS resolving process doesnŠt continue as it is usually
the case with normal CNAME

RRSIG Secured record set signature (DNSSEC)
SOA Marks the start of authority record and speciĄes conĄg-

uration and timing information for the DNS zone
TXT For arbitrary textual information; nowadays mainly for

transmitting machine-readable data for various addi-
tional DNS-related protocols

DNS in the case of authenticating and validating resource record data. The security
processes thus can use further, additional resource records which is the case with
DNSSEC.[67][68]

2.3.3 DNS extensions and security considerations

The mechanism to extend DNS beyond adjusting the original DNS header setup is
called DNS extensions (EDNS), which can be referred also as EDNS0 for the basic
version 0 of this mechanism. One of the main purposes of implementing EDNS
has been adding security features to the DNS system but there are other uses for
DNS extensions too, such as forwarding client subnet data towards the authoritative
DNS servers in the recursive DNS process with EDNS Client Subnet (ECS). This
information could be used by the leaf DNS server, for example, to choose optimal IP
addresses for resolving the FQDN, based on the clientŠs geographical location, which
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Code Snippet 1 - Example DNS database Ąle used by BIND
@ IN SOA ns1.example.com. admin.example.com. (

29 ; serial

3600 ; refresh

1800 ; retry

604800 ; expire

600 ) ; ttl

; name servers - NS records

IN NS ns1.example.com.

; name servers (A records)

ns1.example.com. IN A 11.22.33.44

; 11.22.33.0/24 - A and CNAME records

host1.example.com. IN A 11.22.33.51

host2.example.com. IN A 11.22.33.61

host3.example.com. IN CNAME host1.example.com.

could be deciphered from his subnet address. The EDNS pseudo resource records
contain a Ąxed part at the start which denotes the existence of EDNS RR type with
value 41 and the EDNS version, after which there is a variable amount of actual
options. Example of this speciĄc option data is shown in Figure 14 which describes
the ECS option format, where at the beginning, there is a code for depicting the
option type, the length of the option record and after that, data relevant to the
actual use of the option. This basic structure is common for all types of EDNS
options, and in this case, the option data payload includes the client subnet address
range, adjusted by the source and scope preĄx lengths to manage the accuracy of
the forwarded range information.[60][69]

Figure 14: DNS ECS option resource record

As DNS is an application layer protocol which works usually over UDP and IP, it has
to take into account packet capture problems that come with insecure UDP/IP data
traffic. The main issue with DNS security is that MitM-type attacks could be done
by malicious entities intercepting DNS queries either between recursive DNS server
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and authoritative DNS server or between the clientŠs DNS resolver and the local DNS
server. The attacker could then send forged information back where false addresses
are given to the DNS resolvers, which would direct the client to some hostile IP
address. Additionally, MitM-type attacks can be used to do DNS cache poisoning,
especially in the recursive DNS process, where false information is injected to the
DNS server or resolver cache, where faulty, cached address continues to direct to the
wrong address. Cache poisoning can lead to name chaining attacks, where a CNAME
record for example is used to redirect clients to resolve some arbitrary FQDN.[70]

In order to solve the aforementioned DNS security problems, DNSSEC was developed
for validating DNS RRs by attaching a digital, cryptographic signature to the records
of a particular DNS zone. This idea links to using public and private cryptographic
security keys which are elaborated further in the next chapter, but for clariĄcation,
the relevant DNSSEC resource records were shown in Table 3, marked with the
DNSSEC note. In the DNSSEC hierarchy with a chain of trust and with using EDNS,
the root zoneŠs Delegation Signer (DS) record can be used to verify the DS and
DNSKEY of the TLD server. Then, the DS of the TLD in turn can be used to verify
the keys in a connected lower-level domain and so on. The resource record validity
of an authoritative domain can Ąnally be veriĄed by checking the Resource Record
Signature (RRSIG) of the RR set with the DNSKEY of the DNS zone, where the trust
for this DNSKEY was passed down from the root. The existence or non-existence of
a particular RR can also be veriĄed with the Next Secure Record (NSEC), to spot
additional, falsiĄed RRs. The DNS system integrity can be maintained with DNSSEC
if it is deployed effectively, but there are still other cybersecurity issues with DNS
such as DNS servers being susceptible to DoS- and DDoS-attacks. It is easy to see
that spoofed UDP queries could be sent to critical DNS servers to drain computing
resources and cause delays, if not total DNS system shutdown, which can certainly
be a problem for lower-level DNS servers. At least for the higher levels on the DNS
hierarchy, anycast IP addressing is employed for load distribution, where there are
essentially multiple DNS servers behind a single IP address. Using anycast, traffic is
directed automatically towards the closest DNS server behind an anycast IP address,
from the clientŠs point-of-view, using the standard Internet routing. This, at least
in principle, makes widespread DDoS-attacks difficult to implement versus singular,
critical DNS servers, but deploying anycast in a larger scale can be very difficult
due to routing complexity from simultaneous use of many identical IP addresses
[71].[68][70][72][73]
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3 Internet service security

In the context of network service security, there are three main concepts stemming
from computer security Ąeld, which help deĄne the parameters for a secure web ser-
vice: conĄdentiality, integrity and availability. ConĄdentiality generally means access
control, where access for the service is only granted to entities that have the proper
credentials which are authenticated usually during establishing the communication
session. ConĄdentiality also goes beyond having just rights to access some service,
as it is often important to protect sensitive data traffic going between authenticated
clients and some secure web service. In these cases, data encryption can be utilized,
where only entities with credentials can decipher the sensitive messages being sent.[1]

Often, it is also important to ensure that the received data in telecommunication is
not malformed or tampered with and is from the correct sender, all of which link
to the integrity principle. Methods for helping with these issues usually include
utilizing checksums and length Ąelds in protocol headers, as these values can be
used to validate data packet contents to some degree. More robust methods can
utilize calculating a hash value from the data packet contents which is a unique,
relatively short, one-way, textual representation of the content, received from a
mathematical hashing algorithm with the original data as input. The differences
on data packet contents could then be noted by the receiver when he compares the
hash value in the packet header, for example, to the hash value calculated for the
arrived packet. For resolving errors in the content, the process usually just involves a
request to re-send the data if speciĄc error correction methods are not in use. For the
problem of validating the sender for some arbitrary data traffic, the common solution
in the Internet is the use of Public Key Infrastructure (PKI) that relies on public
key-encryption. With PKI, network entities have a private security key and a public
security key pair, where public keys can be distributed to everybody. The relevant,
common use case of public key encryption is that the data signed with a private key
can be validated by using the corresponding public key. In many cases PKI is also
used to facilitate user authentication and data encryption, where a common example
would be a client connecting to some secure web service, such as a bank website,
with HTTPS which utilizes TLS and PKI.[1][74]

Lastly, the availability concept in the cybersecurity context means that a service
should be available to use when needed. This can relate to maintaining and updating
the service hardware and software to a point, where the probability to encounter
sudden system downtime due to hardware malfunctions or software bugs is very
low. Additionally, backup systems could be installed to take over if sudden service
breakage occurs. In this thesis, the focus, however, is on observing the proactive
and reactive measures that can be taken against outside actions that try to affect
service availability. Usually this means that malicious entities try to inject lots of
illegitimate data traffic to network systems, with DoS- and DDoS-attacks, to use up
systemŠs processing resources, memory and network bandwidth. These actions would
then make the system to be unavailable for actual users, as it may shut down due to
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software or hardware failure in the face of abnormal amount of sudden data traffic.
Even if shutdown is avoided, the system may be too preoccupied by processing
the bogus traffic and would then reject most of the legitimate clients. Many times,
efficient traffic Ąltering methods such as utilizing Ąrewalls can be used to reject the
attack data Ćood, especially if small amounts of IP source addresses or speciĄc port
for the hostile traffic can be pinpointed. As address spooĄng is quite easy to do on
the Internet, source-based Ąltering may not be as effective, though, so DoS- and
especially DDoS-attacks can still pose a major threat to web service security.[1]

This chapter Ąrst discusses the user authentication data encryption basics and brieĆy
introduces PKI and TLS, which are the cornerstones of modern Internet security,
where data goes over insecure communication channels. More detailed description
of PKI and TLS is included in Appendix B. After this initial part, the threat
landscape in the web service availability context is presented, where various DoS-
and DDoS-attack types are discussed. Following this, there is a section about the
defense measures that can be taken against these attacks. In the last part of the chap-
ter, the Linux OS network security functions and the Realm Gateway software are
presented, as they are an important part of the actual testing procedures in this thesis.

3.1 Encryption, authentication and PKI

On the very basic level, secure Internet communication between network peers would
require some verifying methods, so that only the intended recipient would be able to
utilize the communicated messages. First concept that links to this is the symmetric
encryption scheme, where the Ąrst task is to create an encryption key, which is usually
some randomized text of reasonable length. Using this key and the to-be-encrypted
data as an input, chosen encryption algorithm then gives out encrypted data that
can be sent to the other peer. In symmetric encryption, it is assumed that the
recipient has access to the same encryption key which he can then use to decrypt the
message with the corresponding decryption algorithm, which takes the encryption
key and encrypted message as an input and gives out the actual message. For the
actual encryption procedure, various methods are available such as commonly used
block ciphers, where a deterministic transformation algorithm is applied to the input
data in a block-by-block manner with the blocks being a sequence of bits of pre-set
length. In a more formal manner and to present an example, generalized block cipher
encryption function is

EK(P ) ≡ E(K, P ) : {0, 1}k × {0, 1}n → {0, 1}n, (1)

where E is the encryption algorithm with some arbitrary plaintext P and the
encryption key K as an input. The parameters k and n denote the key size and
the block size in bits respectively, where an encryption result for n-sized block of
plaintext is then n-sized block of encrypted bits. The decryption is then done with
the inverse function

E−1

K (C) ≡ DK(C) = D(K, C) : {0, 1}k × {0, 1}n → {0, 1}n, (2)
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where D is the decryption function which takes the encryption key K and the
encrypted text C as an input and calculates out the original plaintext for each block.
In respect to K,

∀K : DK(EK(P )) = P, (3)

which means that with arbitrary key and arbitrary input text, the encryption and
subsequent decryption of this text will be possible, if the K is the same for both
procedures.[75] Block cipher algorithms commonly in use nowadays include Advanced
Encryption Standard (AES) and Triple Data Encryption Standard (3DES) which
is based on using Data Encryption Standard (DES) algorithm three times over the
input. Both of these algorithms base the encryption on enacting multiple rounds of
permutations such as bitwise operations or value re-arrangement on the plaintext
blocks to produce a pseudo-random permutation from this text based on the encryp-
tion key.[76][77]

In addition to encrypting telecommunication, the issue of net entity authentication is
also important. This is more relevant to server-client type web services, where a ser-
vice such as web bank maintains a database of authorized client identities. The client
would then connect to this service, and during the connection setup he transmits his
user identity and the respective password to the service which would then compare
this to its user-password database to enable authorization. One major issue with
this very basic scheme is that if speciĄc traffic sending the username and password is
eavesdropped, the attacker could then utilize the same credentials later. One way to
combat this problem is for the server to send a additional text string or salt value to
the client, where client will calculate a hash value with a one-way hash function using
the combination of his password and the given salt as an input. This hashed value is
then transmitted to the server that checks this value for the given username, as it can
calculate the same hash result from the respective password and the salt it sends to
the client. The attacker would not then be able to retrieve the actual passwords from
these messages, as the point of one-way hash functions is that one cannot calculate the
input easily from the output. Authentication method, where the server will provide
some parameters to the client to be processed and to be used in hashing the password
information before sending it to the server, is called challenge-response identiĄcation,
from which a Challenge-Handshake Authentication Protocol (CHAP) is a simple
example [78]. With authentication, it is also good to note that nowadays the password
databases usually contain hashes of the passwords, which means that if the database
is compromised, it doesnŠt automatically lead to unauthorized access.[75, pp. 321Ű420]

Two security challenges that relate to symmetric encryption and user authentication
in client-server relationship must be noted. The Ąrst problem is transmitting the
symmetric encryption keys to communication peers over the Internet. There could
be a separate channel for sending this information such as the peer calling the
other by telephone and then telling him the key for example, but these processes
become more burdensome if the peer is distant and doesnŠt have a secure contact line.
Additionally, there can be trust issues, when a client has to be sure that the server
he contacts, when giving out his credentials, is the real deal and not some malicious
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entity masquerading to be the server. This is where the Public Key Infrastructure
(PKI) using public-key cryptography comes in.

The basis of PKI is public-key cryptography which is an asymmetric encryption
scheme. In contrast to symmetric cryptography, two different encryption keys are
used here: the public encryption key and the private encryption key. The idea is that
data to be transmitted can be encrypted with the public key and then this data can
only be decrypted with the private key. The creator of the key pair can then publish
the public key to be used by anybody, who can then send encrypted messages to
the key creator which only he can decrypt. Additionally, the key pair creator can
sign messages using his private key in combination with the text payload, where
the receiver can then verify this message using the public key to ensure that it was
signed by the corresponding private key and it was not changed during transit. The
major beneĄt of public-key cryptography is that web services or even normal web
users can distribute their public keys freely, which can then be used to ascertain
their identity as they can send signed messages during the connection establishment.
Example of this would be authentication where a client tries to connect to some web
server who, in turn, can send identity assurances with a signed message before the
client submits his credentials.[75, pp. 283Ű312]

With PKI, the difficulty in solving the private key when public key is known can
be based on well-known mathematical challenges. For example, using powers and
modulo with the private key in the message signing and hashing process can be
utilized, as factorizing prime numbers is problematic especially in a short time period.
If the cryptographic parameters are chosen properly, the base of PKI security is
quite solid at least with up-to-date security algorithms. Additionally, PKI requires
infrastructure and trusted entities to distribute the public keys, mainly to make sure
that the given public key for some web service can be linked to the actual web service
and is not forged. The PKI is then utilized in conjunction with TLS when HTTPS
connections are made. With TLS, a secure connection is created with the use of
session-speciĄc encryption keys that are partly based on the public and private keys
of the connection peers, which enables encrypted network connections for validated
services with the possibility to use client authentication. More detailed description
on how PKI, the related key distribution and TLS works is presented in Appendix
B.[75, pp. 283Ű376]

3.2 Relying on PKI

The security of the encryption and key exchange schemes in PKI varies depending
on if the utilized algorithms are up to date and the input parameters such as the
given encryption key are of sufficient length. A clear boon for PKI with modern
encryption is that the brute force approach in decrypting TLS session messages for
example is computationally very intensive. The fastest known algorithm for factoring
large integers, General Number Field Sieve (GNFS), which could be used to solve the
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private keys with common PKI algorithms, among other things, has the complexity

C(n) = O{exp[c(log n)1/3](log log n)2/3}, (4)

where O denotes the big O-notation that describes how the given function behaves
as it reaches a certain limit or inĄnity and where the constant c depends on the
exact version of the GNFS (for ŤgeneralŤ cases it is 64 divided by 9 to the power of
one third, which is roughly 1,92).[79] The key thing to note here is that the time
complexity or computational complexity of GNFS is

TExample(n) ≈ 2n1/3

, (5)

where Texample(n) describes how the number of required computations increases for
solving the particular security key, when the input size, or key length n in this case, for
the security algorithm increases. The time complexity here is sub-exponential which
means that the increase is somewhere between exponential growth and quadratic
growth, which is also illustrated by Figure 15 showing how fast the resource de-
mand grows in logarithmic scale when process types of different time complexities
are compared. From this Ągure, it can be seen that the run times for GNFS will
start to rise faster than the cubic function when the input goes beyond 100000.[80][81]

Figure 15: Time complexity growth comparison

As Figure 15 implies, solving private key components in the PKI context becomes
very burdensome when the input grows more and more, even by the state-of-the-art
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factorization methods. For example, solving the private key for Rivest-Shamir-
Adleman (RSA) algorithm, which is discussed in Appendix B, with properly chosen
input parameters and with 768-bit modulus could take over 2000 years of comput-
ing time from a single 2 GHz processor in 2009 [82]. This means that it is not
feasible to crack session based private keys that are used only for a short time
during the TLS handshake, if the encryption parameters are large enough. The
same resiliency holds for modern symmetric encryption schemes such as AES with
256-bit keys too. Cracking this AES encryption with 2 to the power of 256 different
key possibilities just with brute force approach, with a 2 GHz processor and with
one key checked per clock cycle to simplify, would take 10 to the power of 60 years
in order to exhaust the key space. With strong symmetrical and asymmetrical
encryption schemes, usually the problems with data conĄdentiality and integrity are
caused by human error, software bugs and design faults, and built-in weaknesses
in certain mathematical algorithms in use for the encryption and hashing processes.[1]

If inherent security algorithm problems are scrutinized more closely, one of the
more apparent issue is the existence of hash collisions with hashing functions. As
hashing ideally creates a unique, often condensed, output from arbitrary input, it
is possible that two different inputs would create the same hash, especially if the
hash length is limited. Exploiting hash collisions would make it possible to forge
hashed signatures even if the forger doesnŠt have access to the actual private security
key. An example case of this kind of vulnerability is the Message-Digest 5 (MD5)
algorithm hash collision issue, where the expert consensus is to avoid utilizing this
common protocol for any serious use-cases [83]. Often protocol design weaknesses
can be Ąxed by adjusting the security suites to use other, more recent hashing or
encryption algorithms as a base, as there are many options available. With TLS, the
challenge usually lies on the inter-operability of multiple different components in
the TLS security suite rather than on the security of the best pieces there. Software
conĄguration faults and problematic 3rd party programs may cause the TLS session
to become compromised, where one example of this kind of issue with older TLS
versions is the downgrade attack, where MitM-attacker could inject false initial TLS
cipher suite parameters to the server on behalf of the client to make the session use
less secure. Another example issue of similar ilk is the truncation attack, where
attacker can inject un-encrypted SYN-FIN TCP messages towards the server to
terminate the TLS session during the clientŠs TLS log-off process in order to keep
the actual TLS connection up without the clientŠs knowledge. This would enable the
attacker to later access the service using the clientŠs account.[84][85]

Provided that the cipher suites and hash functions used with PKI are updated to
be secure such as using AES for encryption, Secure Hash Algorithms version 2 or 3
(SHA-2, SHA-3) for hashing due to them having no apparent hash collision faults, and
that the key generation parameters are chosen properly, PKI can form a good base
for ensuring data conĄdentiality and integrity [86]. This comes at some cost, though,
as encryption and decryption of data demand more processing resources compared
to handling normal, un-encrypted data. Additionally, transmitting digital signatures
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attached to messages will cause network traffic overhead as lengthier signatures can
be quite noticeable compared to UDP and IPv4 packet sizes for example. When one
examines attacks versus PKI and TLS, they often include exploitation of short-lived
software bugs or deprecated software that is still in use by neglect and this may
require signiĄcant skill, research and preparation from the attackers. In contrast to
this, there is unfortunately a simpler and more straightforward way to affect web
service security, which is to utilize the denial of service in the availability context.
The issue here is that generally most web services are supposed to serve the public
somewhat leniently and not discriminate against clients at least initially. On the other
hand, it takes far less resources for a client to send a query to the service, especially
if he doesnŠt care about the reply, than it takes for the service to process the received
query and do some action based on the result. This can then lead to signiĄcant
mismatch in resource usage in the client-server model which is made more drastic
when problematic queries reach the application level and demand complex processing.

3.3 Denial of service

The basic premise of Denial of Service (DoS) concept is the prevention of use for
some service for legitimate clients due to the service being either hampered or down
entirely. This can be done by directing problematic network traffic towards the
service. On a deeper level, this whole concept is quite complex as there are various
attack methods available that can target different network protocol stack layers and
then speciĄc components within those layers. What makes a particular DoS-attack
even harder to deĄne is the case that DoS-attack campaign can incorporate various
attack methods at different times or even simultaneously to make defending against
it harder. There are two major categories for identifying DoS-attacks on a higher
level, though: the number of attacking entities and the base method of the attack itself.

The aforementioned number refers to the amount of network entities that will generate
malicious data traffic towards the victim. Generally, if there is only one attacking
node, the speciĄc attack is considered to be just a ŤstandardŤ DoS-attack, whereas if
there are more attacking network nodes, the attack would actually be a Distributed
Denial-of-Service (DDoS) attack. Nowadays, most DoS-attacks are DDoS-attacks,
as they can leverage far more network resources against the victim, where the attack
campaigns could include thousands of hostile nodes. The latter category about
methods refers to the attack being either semantic or being a flooding attack. With
the semantic attacks, the goal is usually to target speciĄc network protocol vulnera-
bilities, where protocols have problems in handling certain malicious data messages
or unexpected client behavior. When the service then has to deal with this type of
traffic and client procedures, it would use a lot more system resources than normally
or it could even crash. The Ćooding method, on the other hand, refers to overloading
the victimŠs system or network link with a Ćood of legitimate or semi-legitimate data
traffic. The victimŠs overall system might be able to handle some of this traffic, but
simultaneously this would draw away a lot of resources from handling normal users
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who may then experience service delays or even service inaccessibility.[31][87]

To elaborate further on computer resources, it is easy to understand that a system
running a web service would have Ąnite computing power and memory for handling
incoming queries. Usually resolving queries requires data searches and possible data
retrieval, both accessing the system memory, and may also require some arithmetic
computations if new values for the service database are calculated for example. More
queries coming in would then simply mean more spent processor time and more
memory usage. In regard to network connections, connected systems have some
type of a Network Interface Card (NIC) with specialized hardware that handles
incoming and outgoing network traffic and then forwards it to the OS or from it to
the network. The important thing to note here is that both the OS and the NIC
have data buffers which are essentially data packet queues used to store incoming or
outgoing communication traffic that is not immediately handled. Especially with
DoS, it is possible that these buffers become full when traffic accumulates to the
queue at a faster pace than the system can process data coming out of the queues.
The result of this overload is that the system will reject and drop new packets that
try to enter the buffer. This Ťbuffer fullŤ phenomenon is basically the case of a
network link being fully saturated, where network-related buffers at some point of
the data path start to drop packets due to processing limitations or as the incoming
packet Ćow goes beyond the available link bandwidth.[88][89]

As has been implied earlier in this thesis, there are certain factors with the basic
Internet architecture and use principles that make DoS- and DDoS-attacks very
feasible. For one, IP is a packet-based, connectionless protocol, where there is
generally no accountability for source entities if they spoof their IP packet source
addresses. Additionally, network control is distributed all over, and security policies
and methods vary a lot in different sections of the Internet, as it is a vast network of
different networks. This means that attackers could compromise more insecure parts
of the Internet and use those sections to enact DoS- and DDoS-attack campaigns
against victims elsewhere. Most DDoS-attacks focus on using hacked computers of
unsuspecting, normal network users as attackers instead of taking direct control over
network infrastructure, though. Finally, the intelligence which affects data traffic
engineering is not necessarily located in the network but at the endpoints, which
brings about differences in available resources. The network infrastructure may work
in a best-effort manner with also having large bandwidth for data transmissions
and this can then be utilized by DoS- and DDoS-attackers, where the network itself
wouldnŠt have the tools to discriminate against hostile traffic. If large amount of
network resources are directed towards some singular network node with DDoS
campaign, the target rarely has comparable resources to cope with all incoming
traffic.[31][87]
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3.3.1 DoS principles and address spoofing

The characterization of certain important aspects of general DoS-attacks, which also
apply to DDoS-attacks, is presented in Table 4, as this makes it easier to formulate
and discuss defense mechanisms against these attacks. In regard to the semantic
DoS-attacks, they are similar in principle to exploits against PKI and authentication
mechanisms in a sense that they often rely on victims using outdated and buggy
software. Dated example in this context is the ping-of-death attack against OSŠs
network manager by sending a large ICMP ping request to it that would be split
over multiple IP packets due to network infrastructure limitations on overall IP
packet size. The victim could then have difficulties reassembling these split packets
with malformed data on the IP fragment offset Ąeld in the header, where loading a
problematic, reassembled packet into systemŠs memory could cause buffer overĆow.
In buffer overĆow, faulty data is injected to unexpected locations in memory, where
it can overwrite critical instructions, which could then crash the whole system. As
network protocol and system logic has improved and as serious software bugs have
been ironed out, the far more common threat nowadays comes from the Ćooding
attacks.[31][90]

In contrast to semantic attacks, the basis of Ćooding attacks is the use of legitimate
data traffic. Perhaps the simplest case is just the attacker leveraging traffic generator
resources that would exceed the perceived service capacity of the victimŠs network link
and then Ąll it by sending bogus UDP messages for example. More advanced Ćooding
attack schemes exploit certain protocol behavior or procedures in the network level
when dealing with speciĄc legitimate protocol messages or queries. Flooding attacks
can also target application level entities such as HTTP servers. For example, HTTP
service could suffer from congestion if attackers would send in abnormal amounts of
speciĄc queries, where each query would require a taxing database search in order to
produce the requested Web-page. These advanced Ćooding attacks are discussed in
more detail later in this section.[31][87][91]

Another important characteristic from Table 4 is the source address usage. The
most straightforward way for the attacker would be to use the actual IP addresses of
the attacking network nodes but this has several major drawbacks. For one, if the
attack traffic comes from limited amount of source addresses, this traffic is easy to
pinpoint at various levels on the network in order to filter it out. The concept of
Ąltering is discussed in depth later in this section, but basically it is an essential DoS
defense mechanism, where a network node in the attack path can reject problematic
traffic going through, based on some criteria such as traffic IP source address. The
second major drawback with the use of real IP addresses is the accountability, where
victim can trace the attackersŠ resources on their IP source addresses after the attack
for legal ramiĄcations and compensation for suffered damages. Therefore, spoofed
IP addresses are often used to mask the identity of the attacker, as the IP routing
architecture will work with forged source addresses if replies to data traffic can be
ignored.[31][87]
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Table 4: General DoS-attack characteristics

Characteristics Different methods and
qualities within a charac-
teristic

Further method and
quality separation if
necessary

Attacker amount 1 - One attacking node
(DoS)
2 - Many attacking nodes
(DDoS)

Basic attacking
method

1 - Semantic: target speciĄc
protocol and system vulner-
abilities
2 - Flooding: overwhelm vic-
timŠs system with legitimate
traffic

Source address
use

1 - Spoofed address
2 - Valid, routable address

1a - Spoof by using random-
ized, valid source addresses
from the whole IP range
1b - Use speciĄc spoofed
addresses such as addresses
which lead to nowhere or are
the same as destination ad-
dress

Attack rate 1 - Constant
2 - Variable

2a - Increasing
2b - Fluctuating such as
bursts of attack traffic peri-
odically

Attack traffic
characterization

1 - Can be characterized by
used protocol or port for ex-
ample
2 - Cannot be easily charac-
terized

Attacker persis-
tence

1 - Persistent
2 - One-off

Victim Type 1 - SpeciĄc application
2 - VictimŠs system
3 - VictimŠs network
4 - Network Infrastructure

Attack impact 1 - Degradation of service
2 - Service shut-down
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Normally networked systems will add valid IP source addresses to outgoing data
traffic automatically based on the real IP address of the sending network interface,
but a packet manipulation software such as hping can be used to alter outgoing
packets before they are forwarded deeper into the network [92]. Additional way to
alter address or port information on the transport layer and above is the use of raw
sockets, where arbitrary protocol scheme can be utilized on top of IP [93]. Utilizing
packet manipulation tools or raw sockets usually requires root access, however, which
limits the amount of computers attacker can use with source address spooĄng. The
basis of how to choose these addresses upon transmitting the packet varies: the
address could be randomized from some selected IP address pool or over the whole
IP address space based on some random distribution, or speciĄc, confusing or prob-
lematic source addresses could be used such as address Ť0.0.0.0Ť. The problem with
utilizing a selection of special, spoofed IP source addresses is that they are equally
easy to notice and Ąlter than if the attacker would be using a small selection of real
IP addresses as sources. This usually leads to attacks with spoofed sources ran-
domly selected from a very large pool of IP addresses spread all over the world.[31][87]

Finally, as the most nefarious method of masking his own IP address, the attacker
could utilize willing, or far more often, unwilling but oblivious proxy entities which ei-
ther generate DoS-traffic based on the attackersŠ commands by themselves or forward
the attack traffic from the attacker towards the victim. With this type of scheme,
the proxies could be made to utilize spoofed source addresses similarly to the case
where attacker himself would do it to his own source address to further complicate
defending against the attack. This process relates to the creation and utilization
of botnets with DDoS principles, and to reflection- and amplification-attacks, all of
which are discussed further in the following subsections.[31][87]

In addition to noting the source selection, Table 4 presents characterization based on
general attacker behavior and on additional features of the attack data traffic. When
the rate of attack traffic is considered, the simplest approach is to send as much
traffic as the source is capable of transmitting, in a high and stable rate, towards
the victim, where the short-term disrupting effect can be drastic, but the attack
can then be noticed and reacted to quickly. The alternative to this is to vary the
attack traffic rate and try to mimic behavior of legitimate users, where especially
with DDoS, many seemingly innocent clients are draining the victimŠs resources, as
there are just so many of them. This also connects to the overall attack duration, as
very high traffic rates may be available for the attacker only for a short duration. For
example, if compromised proxies are used as middle-men without their knowledge,
even they may notice if their network resources are used to the maximum and then
disconnect from the attack campaign. For comparison, widely distributed, low rate
DDoS can be persistent more effectively, as it is more difficult for the victim and
unwilling proxies to pinpoint the attack traffic.[31][87]

When incoming network Ćows of the attack are examined more thoroughly, it is
wise to assume that there is usually some higher-level protocol or protocols that are



62

attached to the Ćow, as there is no point in sending just empty IP packets, especially
as they can be Ąltered out quite easily. Flow features such as used high-level protocols,
their payloads and the source and destination ports can be checked to Ąlter out
unwanted traffic. As is the case with data rates, though, clever attackers can try to
utilize same ports and protocols as normal users. This is quite problematic, as most
online services offer a few speciĄc services on the standard ports such as hosting a
DNS server or hosting web sites with a HTTP server using the well-known ports
of 53 and 80 respectively. It is also good to remember that the network nodes on
the path wonŠt access this higher level information at least by default, so the attack
traffic may go unnoticed until it is very close to or at the victim.[31][87]

From the victimŠs perspective, Table 4 shows two distinct characteristics which are
the speciĄc attack target component in the victimŠs system (or connected to him
in some way) and the effect to this target. In a narrower DoS-attack, only speciĄc
applications on the victimŠs system may be targeted, but as was mentioned before,
many web services have some singular purpose, where affecting this main process will
then affect the whole system. With more generalized DoS-attacks, the target is the
whole host system of the service, where the goal is to deplete the network resources
or the computing resources of the victim. This would lead to any hosted application
or service being congested or even inaccessible. With cloud hosting, it is also possible
that attacking a singular host in the cloud could affect other services there as the
services could be hosted on the same server, behind the same network link. If the
scope grows larger, attacks could also target critical network elements near the service
such as nearby routers that direct traffic to the victimŠs network segment, or with
massive scale attacks, more distant network infrastructure such as BGP routers.
Central Internet infrastructure is well provisioned, though, so serious negative effects
on these network parts demands substantial resources from the attackers, which
could be possible if they are state sponsored for example. As for the result of a
particular DoS-attack, most of the time with Ćooding attacks, the service may not
necessarily crash, but major degradation of service quality is often achieved, which in
practise could feel like the server is down from legitimate clientŠs point of view.[31][87]

If the motivations behind DoS-attacks are examined, Ąnancial gains are an important
factor. Criminal organizations or money-hungry hackers could extort money from
web service hosts who fear impending DoS-attacks or wish for a ongoing DoS-attack
campaign to stop. It is also possible that a competitor for some web service would
buy DoS-attacks as a service against this victim in order to drive them out of busi-
ness. Additionally, spite or a need for revenge may cause some individuals to enact
DoS-attacks against former spouse or employer for example, but with these cases,
the attackers usually have limited resources at their disposal. Political motivations
may also lead to people such as terrorist groups of hacktivists to employ DoS-attacks.
Finally, most dangerous groups within DoS-attackers are likely state-backed specialist
groups who have plentiful resources and use DoS-attacks for political leverage and
as a part of cyberattacks or hybrid warfare doctrine. It is also worth noting that
not all DoS-attacks are intentional. It is possible that sudden Ćash mobs could
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overwhelm ill-prepared web services if the service attracts traffic based on fresh
referrals from some popular website or from news. More benign example of this is
likely the case where commercial web service holds a sale event and then abrupt
surge of interested customers comes in causing congestion or even a shut down, as
the server is overwhelmed.[87]

3.3.2 DDoS principles

With the general server-client model on the Internet, servers are usually focused
on doing a speciĄc task and are provisioned to handle reasonable amount of si-
multaneous clients from the get-go. The limiting of non-essential functionality on
these servers makes this easier compared to standard client computers of an average
Internet user receiving queries. This can make it difficult to overwhelm the service
resources with a very limited number of hostile clients. Because of this, attack
campaigns will often utilize hundreds or even thousands of simultaneous attackers
in order to really cripple targets. Recruiting large number of these attackers, so
that they would act willingly and without compensation, is likely impossible unless
there are wide-spread political motivations against the victim. This has led to
many DDoS-attack campaigns to utilize botnets, where the attacker exploits security
weaknesses of a large group of regular network nodes called bots (or hosts) and
gains at least limited control over them. These captured nodes can then be used to
forward or generate attack traffic towards the DDoS-victim based on the commands
from the botnet controller. Another big beneĄt of using botnets is the fact that
they mask the attackers IP addresses, especially if address spooĄng is mixed in, as
the victim sees the bots being the attack source. It is also worth noting the more
tech-savvy criminals could rent their botnets for attackers who have less technical
experience. To illustrate, the basic structure of a botnet is shown in Figure 16.[31][87]

In botnet DDoS-attacks, the process starts with the attacker compromising a group
of unaware bots who are often outdated or simple network nodes that run older
software that has security faults or donŠt run proper security mechanisms at all,
while still being connected to the Internet. The attacker may Ąnd and recruit these
machines for example by port scanning, from vulnerable node-lists spread among
cyber-criminals and from phishing campaigns. In port scanning, attacker would
usually send either TCP-SYN-messages or UDP packets to a range of ports on
the target node, which would either respond with proceeding with the 3-way TCP
handshake procedure or by sending ICMP Ťport unreachableŤ error messages if the
UDP port is not available or with nothing if the opposite is true [94]. This would
then enable the attacker to note open ports and also note deprecated or problematic
services by which a worm-type malware could be injected to enable unauthorized
access and further network infection. It is possible that scanning for potential bots
is done manually, but usually this process is automated and also utilizes bots that
have been captured earlier to participate in the scanning process to widen the search
for new bot candidates. With phishing, the attacker could send spam emails to wide
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Figure 16: DDoS botnet structure

array of network clients with an attached link which runs an exploitative trojan
horse-type program masquerading to be something benign, but would in actuality
compromise the system if the link was opened [46, pp. 433Ű448]. In any case, the
methods can be similar as with gaining unauthorized access in PKI, where attacks
often rely on human error, on system misconĄguration or on people using older,
unsafe protocols and software.[31][87]

After the attacker has gained access to a large number of bots, he must devise a control
method to initiate the actual DDoS-traffic. It is possible that the injected code on
the bots is set to automatically start attack traffic at certain times or based on some
system event, but often attacker requires more hands-on control over the generated
traffic, so he may utilize handler entities on the bot network. Basically, handlers act
as a proxy between the master and the bots to conceal masterŠs identity, where the
handler usually is some common web service that can be manipulated by the master.
Two widely used examples of handlers are Internet Relay Chat (IRC) servers and
HTTP servers. IRC is a web service enabling textual communication via speciĄc chat
channels on the IRC server, and when these servers are used as controller scheme
middle men, the program exploit on the bot will connect it automatically to some
IRC server and a speciĄc, hidden channel there, where the attacker will communicate
with coded messages to control the botŠs behavior. As IRC is a legitimate service and
the control information exchange rarely takes much bandwidth, this communication
may be difficult to spot. With HTTP servers as handlers, the attacker maintains a
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web page with embedded code that contains the attack and bot control commands,
where the bot is programmed to retrieve this web page periodically. Similarly to
the case with IRC, using HTTP is a common occurrence for an arbitrary network
node, so spotting illegitimate uses of it could be problematic. It is also feasible to
use Peer-to-Peer (P2P) methods to communicate the bot control data, where there
is no central control and where the bots maintain databases of contact points from
where control data and malware updates can be retrieved.[31][87]

The level of access the attacker has on each bot affects how demanding tasks the
bot could make in the DDoS-campaign. Most shared computer systems enact the
principle of limiting userŠs capabilities to only what is necessary, which means that
if user credentials or access to some large network node becomes compromised, the
attacker may not have gotten root access but rather the privileges of a standard
user, who has limited options for network traffic control. Address spooĄng done
by the bots will make tracing them much harder, but this generally requires that
the attacker has root access, as spooĄng often requires software that does low-level
and abnormal packet manipulation. The non-root users can usually open network
connections with common protocols from most legitimate ports, though, which makes
them perfectly adequate DDoS-traffic sources if spooĄng is not necessary. Lastly,
if the attacker has very limited, guest-type access, he may only be able to create
very speciĄc network traffic such as utilizing TCP connections for HTTP traffic,
but this can still be dangerous. On this level, attackers could manipulate web page
scripts within the browser sandbox for example to create excessive traffic. No matter
how the botnet was recruited or how much access the attacker has to bots, Ćooding
random traffic towards the victimŠs network at full bandwidth may be effective for a
short while, but this often makes the traffic easier to Ąlter out and it could also be
noticed quickly by the botŠs legitimate controller. For these reasons, masking the
traffic to be similar to standard network traffic and exploiting protocol performance
weaknesses at the same time can make the bots both harder to detect and more
effective in a sense that performance loss to victim per sent DDoS-traffic volume is
improved. Going beyond just basic traffic Ćooding schemes will lead to the discussion
about advanced Ćooding attacks in the following subsection.[31][91]

Finally, to demonstrate real life cases, example botnets from this decade that were
successfully used to cause harm include Chameleon and Mirai. Chameleon was found
on 2013 and it was though to encompass around 120000 bots. The infected comput-
ers would regularly visit sites that had click- or page visitation-based advertising
without the bot ownerŠs consent, where each click or visit would generate income
to the site from the advertiser. The Chameleon bots used Windows systems of
regular Internet users, where the malware could run JavaScript and Adobe Flash
(coding- and scripting-languages for web pages), which would then enable hidden
connections to aforementioned websites, where each connection would masquerade as
a legitimate site visitor. Although this case was not connected to a DDoS-campaign,
it works to illustrate creative use of botnets, where the Ąnal victims were actually
the advertisers.[95] In the more standard DDoS-context, the example is Mirai. It
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was discovered in 2016 and was estimated to have between 360000 to 10 million bots,
where the network was composed of simple IoT-devices that had not changed their
default credentials upon installation or just had poorly selected access credentials.
Mirai used port scanning methods to Ąnd these devices and then used a brute-force
approach to test a list of credentials against the device authentication, and upon
successful access, would inject malware to the device which would make it participate
in the DDoS-campaign.[8][96]

3.3.3 Advanced flooding attacks

Network protocols that are not strictly connected to security procedures generally
base their functionality on commonly expected client or peer behavior, where ab-
normalities in this behavior are attributed to network congestion, packet loss or
other factors that are not caused by the clientŠs or peerŠs hostile intent. This un-
fortunately forms the basis for advanced Ćooding DDoS-attacks, where protocol
behavior that was originally meant for congestion control or packet reassembly for
example could be exploited with tailored DDoS-messaging to drain victimŠs system
resources. These types of attacks are possible both on the network level and on the
application level. On the former, the attacks, at least without redirection schemes,
are usually based on exploiting certain types of TCP messages. On the latter, the at-
tack method often relies on demanding or abnormal HTTP- and DNS-queries. [31][87]

With TCP-based advance Ćooding, perhaps the most common case is the SYN-flood.
As was shown in Figure 6 in the previous chapter, the TCP connection is initialized
by a 3-way handshake, where the Ąrst step is for the client to contact the server
by a TCP message with the SYN Ćag on. The server would then respond with a
affirming TCP message with the SYN and ACK Ćags on, and at the same point
reserving system resources for the to-be-formed, full TCP connection with the con-
nection then being Ťhalf-openŤ. In SYN-Ćood attacks, the attacker doesnŠt react
to the SYN-ACK responses or spoofs the SYN source which leads to the victim
not receiving the Ąnal ACK messages which would Ąnalize the TCP handshake.
This would then drain the victimŠs system resources as he has to maintain many
half-open TCP connections, where each connection awaits for an ACK message
that never comes.[97] Additionally, messages with SYN-ACK, ACK, Reset (RST)
or Finish (FIN) Ćags that donŠt belong to ongoing connections could be Ćooded
towards the service, where the service would then need to use resources to decipher
what to do with these messages. To clarify, RST and FIN messages are used to
either request TCP connection reset or tear down respectively, and they are part
of normal TCP connection procedure. Attackers can also create fake TCP sessions
by completing the initial handshake in a proper manner and follow it with prob-
lematic messaging that would request lot of packet re-transmissions or exploit the
TCP congestion window. An example of this would be optimistically sending ACK
packets to the server even if the client has not yet actually received the corresponding
packet that is to be acknowledged. This would then lead to the server transmitting
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data faster and faster which could cause degradation of service to other clients.[98][99]

In the application layer, one straightforward attack strategy is just Ćooding the
service with queries that take a lot of resources to process. With HTTP, these can be
standard GET and POST-type queries which are used to retrieve web resources or to
update a resource on the service. If these actions target large and complex resources,
the load for the service can become quite high [17]. Multiple HTTP requests in a
HTTP session could even be embedded to single data packet, so that it would be
harder to detect problematic behavior compared to a large number of consecutive,
separate GET or POST requests. As HTTP can also be used to upload or enter data
to the HTTP server, attacks could target the database that manages the web pages
hosted by the particular server. This can be done for example with Structured Query
Language (SQL) injection, if the database control and maintenance is done with SQL.
Using this method, the attacker can send in speciĄcally formulated SQL commands
as a text input to some benign web form, which then forwards these commands
for processing. This injected control data could then slow, crash or even delete the
database and would therefore bring down the targeted web service altogether.[100]
With DNS, the simple, direct attack path would be Ćooding in recursive queries,
if the targeted DNS server allows this, where the query would then be propagated
further in the DNS system, demanding more and more resources from the whole
DNS infrastructure.[87]

In contrast to sending in as many queries as possible, attackers can also exploit HTTP
with slow responsiveness and delays in multiple simultaneous HTTP sessions, where
the goal is overload the systemŠs capability to keep up a large pool of concurrent,
problematic connections, in a similar manner to SYN-Ćood exploiting half-open TCP
sessions. Examples of HTTP delay attacks include the slowloris- or slow headers
attack, where HTTP-requests will contain commands and parameters line-by-line
with the Carriage Return Line Feed (CRLF) notation marking the end point. If a
request is missing the Ąnal CRLF note to mark the end, the server may end in a
waiting state and expects more commands from the request until it hits a timeout.
Attacker can then slowly feed request data in accordance of this timeout period to
keep the connection going on while it takes up service resources.[101] In another
delay-based attack example, the attacker sets the HTTP-requestŠs content Ąeld,
which denotes the message content size, to some large value. He can then upload
this content at a very slow rate while the server has to wait patiently until all of the
data has been uploaded, where multiple simultaneous HTTP sessions of this type
will start to degrade the service performance.[87]

As another attack method both on the network layer and on the application layer, pro-
tocol data can often be fragmented over multiple IP packets which was the case with
the semantic ping-of-death. Even if the goal is not to crash the service, reassembling
UDP-packets, HTTP-requests, ICMP-messages and TCP SYN-messages that are
split over multiple IP packets may cause lot of processing overhead for the receiver,
where a large Ćood of these packets becomes quite problematic. It can be said that
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especially in the case with DDoS, the spectrum of potential threats is quite large, as
DDoS-attacks can combine various attack vectors and can also utilize large amount
of network resources with botnets. What makes things even more complicated is the
possibility to use reĆection and ampliĄcation for the DDoS-traffic.[31][87]

3.3.4 Reflection and amplification attacks

In order to hide the identities of the attackers or speciĄc bots, DoS-attacks may utilize
traffic reĆection. This usually involves sending in queries to third party services with
spoofed IP source address, where this forged address actually directs towards the
victim to make an impression that the victim sent the query in the Ąrst place. This
makes tracing DoS-traffic more difficult, as Ąrst the legitimate service who sent the
unwanted queries has to be contacted and the trace needs to be continued from there.
Additionally, traffic volume increase method, which is often used in conjunction with
the reĆection, is traffic ampliĄcation. Amplifying means that the initiating query
or message of the attack traffic reaches some service, which then generates traffic
towards the victim that is preferably (from the attackerŠs point-of-view) much higher
in proportion than initial query volume.[31][87][102]

Simple reĆection scheme is sending in ICMP echo-requests or DNS queries to legiti-
mate network nodes with the victimŠs source address. The victim may be able to
Ąlter this traffic to some extent as he didnŠt initiate these queries and requests, but if
the reĆected response traffic is generated by some DDoS-attack campaign with a lot
of participants, it can easily Ąll the victimŠs network link. A more complex example is
the ampliĄcation and reĆection DDoS-attack using legitimate DNS servers as proxies.
This scheme is illustrated in Figure 17, where the bots create DNS queries to the
legitimate DNS servers. The bots spoof the source address for these queries to be the
victimŠs IP address, which makes the DNS servers direct answers towards the victim,
as they may not suspect any foul play. DNS response which actually conveys address
information is almost always much larger than the respective query, as it contains
RRs that have the queried domain name to IP address mapping and likely also RRs
about noting the authoritative name server address. This then leads to DDoS-traffic
being ampliĄed as each DNS query will result in a larger DNS reply.[87][102]

AmpliĄcation attacks can also utilize IP broadcast addresses, and the Smurf-attack
is a classic example of this. Network broadcast addresses are used as a destination
address when an IP packet is to be sent to every node in the network segment. Each
segment should have this address set up and it is generally the highest possible
address value in the network such as 1.1.255.255 for the 1.1.0.0/16 network.[103] In
the Smurf-attack, attacker would send ICMP packets such as ICMP echo-request
to the broadcast address, spooĄng the source address for these ICMP packets to be
the victimŠs IP address. This would then direct all receiving nodes in the network
segment to direct replies back to the victim. As a concluding note, if one adds
reĆection and ampliĄcation to the mix with advanced Ćooding attacks, this can
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Figure 17: ReĆection and ampliĄcation DDoS-attack with DNS

create very complex and dangerous DDoS-attacks, where the attack is not easily
deterred and the culprits are very difficult to trace.[31][87]

3.3.5 Degradation of service

It is not always the case that DoS- and DDoS-attacks aim to paralyze the victimŠs
system totally or even to a drain resource to a notable degree. Sometimes the goal
may be to do a limited resource denial or degradation of service, where the overall
service capacity is only partly consumed by attackers that donŠt use much resources
at a quick glance, but where the negative effects of the attack traffic accumulates
over time. A way to achieve this would be to do Low-rate Distributed Denial of
Service Attacks (LDDoS) that try to emulate legitimate user data traffic as closely
as possible in contrast to the advanced Ćooding schemes, where the traffic was in
many cases abnormally low or high per connection.[104][105][106]

The motivations to enact DDoS on a very limited scale are likely linked to two aspects.
The Ąrst is the difficulty to detect these attacks which can make them long-lasting.
The second is economic incentive that connects to Economic Denial of Sustainability
(EDoS), where attacker aims to make it unfeasible for the victim to keep up the
web service due to service payments based on computing resource use, bandwidth
costs and customer dissatisfaction about the quality of the service. Competitors
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for some service may purchase hard-to-detect, low bandwidth attack traffic from
criminal entities, where the traffic simulates traffic from legitimate clients. This
will add to the victimŠs service upkeep costs over time, which may then make him
cease operations as proĄt margins decrease. An example case could be DDoS-attack
against some service hosted in a third party cloud, where the cloud system collects
fees based on strictly monitored bandwidth use.[105][106]

In regard to emerging cloud services, while they offer an easy way to harness large
amount of computing resources on a close proximity to clients for various web services,
they are certainly susceptible to DoS-attacks themselves. For one, cloud services
usually host multiple different web services on a particular data center and an attack
against one of these services could then degrade the performance of all hosted web ser-
vices, depending on how the computing resource allocation is conĄgured on the host
system. In addition, cloud resources could be used as a part of a DDoS-campaign,
where nodes in the cloud would generate DDoS-attack traffic. Of course, there
are also some positive sides with the cloud concept in the security context, such as
using cloud services as an additional system to detect and Ąlter DDoS-traffic.[105][106]

3.3.6 Permanent DoS

In many cases, DoS- and DDoS-attacks will, at most, crash the victimŠs system,
where a simple reboot would bring the service back up, assuming that the attack
traffic has ceased in the meantime. Generally, the attacking entity doesnŠt have
authorizing credentials to the victimŠs system or network and has to rely on network
traffic generated outside to disrupt the target. If the attacker has remote access to
the victimŠs system, however, things become far more problematic, as he can enact
Permanent Denial of Service attacks (PDoS), where the target system is adjusted or
damaged to a degree that major software re-installations or hardware replacement
are needed to salvage the service.[107]

The worst case scenario would be an attacker with remote root access, where he
could delete and overwrite the contents of the systemŠs hard disk that has the OS
data and also contains the software which runs the actual web service. This would
then bring the system down until the OS and relevant service software are installed
and started again, with also having the downside that possible client data stored
on the hard disk would be lost. Even more dangerous attack involves compromising
more simplistic and embedded devices such as smaller network routers, where the
Ąrmware of the devices is replaced with a corrupted or speciĄcally tailored version by
the attacker. Firmware is the low-level software Application Programming Interface
(API) that enables OS to access and manipulate the physical hardware, and if it
doesnŠt operate properly, the hardware itself could break or, at best, the speciĄc
component just ceases to function. This may require even more extensive repairs
than re-installation of software and could mean that the device needs to be replaced
altogether.[107]



71

3.4 Defenses against DoS- and DDoS-attacks

As DoS- and DDoS-attacks can seriously disrupt and bring down legitimate network
services, various ways to combat these threats have been devised. On a timing basis,
there is research done on what to do proactively before the attack even starts, what
to do in a reactive manner during the attack to detect and block it, and what to
do after the attack to learn from it to help mitigate future attacks and to Ąnd out
the culprits to bring them to justice. It is also important to note where exactly
the DoS- and DDoS-defenses should be located which is illustrated in Figure 18.[31][87]

Figure 18: Dos- and DDoS-defense characterization by location

Generally detection and defense processes near the victim are easier, as DoS- and
DDoS-attacks are funnel-shaped, where most of the attack data traffic will eventually
go through the victimŠs immediate network. On the other hand, detection appa-
ratus and defenses could be mounted near the attack source to prevent DoS- and
DDoS-traffic going to wider Internet altogether, but in these cases, detection may be
harder, as there is only limited amount of traffic going out per attacker (or bot) with
DDoS. Defense and detection could also be done somewhere in the wider network
infrastructure, beyond the immediate networks of the attacker and the victim, but as
has been mentioned earlier, entities on this level may have little incentive, regulatory
restrictions or limited capability that prevents them doing anything meaningful to the
ongoing attack traffic. Finally, the defense processes could be set up simultaneously
to multiple of these locations, which is called a hybrid defense scheme. As for what
DoS- and DDoS defense and detection means in practice, the attack traffic is often
identiĄed by the receiving system monitoring incoming traffic rates, and when they
go beyond certain threshold, traffic Ąltering and rate limiting could be done. These
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measures are elaborated further in the following subsection.[31][87]

3.4.1 Traffic filtering and rate limiting

Perhaps the most effective way in practice to stop ongoing DoS- and DDoS-attacks
is to filter out or limit the problematic data traffic, so that the targeted system isnŠt
stressed to the limit anymore. This usually means that firewalls are utilized at some
point on the attack path, where the Ąrewall software on a network node monitors
the ongoing traffic and then drops packets that are thought to be part of the Dos-
or DDoS-attacks. Most Ąrewalls are limited to work with Internet and transport
layer information, so parameters for Ąltering include mainly source- and destination
IP addresses, source- and destination ports and some basic data gathered from IP-,
UDP-, and TCP-headers such as TCP Ćag information or IP time-to-live values.
This is often enough to deter at least more simplistic DoS- and DDoS-attacks such
as Ćooding towards ports that are not served at the victimŠs end or large volume of
attack traffic from a small set of speciĄc IP addresses.[46][87]

In more complex attack scenarios, problematic traffic that closely mimics legitimate
client behavior is far harder to Ąlter, especially if it is part of a DDoS-attack. This
can be compounded by the victim only hosting one or a few actual services on his
system such as DNS- or HTTP-server, which then receives all incoming traffic to a
single port. This limits the possibility to detect and deter attack traffic based on some
of the lower layer parameters. In these cases, Ąltering could go to application level,
where the Ąrewall software may have capability to parse some application-speciĄc
parameters such as DNS message Ćags and HTTP request types. This high-level
data offers more Ąne-grained options to handle problematic traffic but processing
packets at this level requires more computational resources for the Ąrewall.[46][87]

Also in regard to the case where attack traffic is difficult to separate from normal
traffic, aggressive Ąltering could block legitimate users as well as attackers. This is
usually where rate limiting comes in, where Ąrewalls impose limits on how many
packets of certain type are permitted per time frame. It is possible that most rate
limited traffic capacity is taken over by the attack traffic, but at least there is a
chance for actual clients to reach the service compared to the case where service
ports are shut down altogether. It is often wise to utilize both strict Ąltering and
rate limiting, where service Ąlters out all incoming random traffic and then has some
overall limit on the actual, legitimate traffic to the proper service port, where activity
below or at this threshold is manageable and does not crash the service. Additional
defense mechanisms to separate legitimate clients from unwanted clients is the use
of Access Control Lists (ACL), where a client needs to authenticate himself before
access to or through the service is granted, as his noted to belong to the list. This
may not be feasible for all web services and causes processing overhead, but ACLs
can at least help stopping application-level DoS and DDoS, as the attacker cannot
access this level at all without authorization.[87][91]
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To elaborate on how Ąltering and rate limiting are set up in actuality, the Ąrewalls
that perform them are differentiated Ąrst by their location. Firewalls can be deployed
to the network infrastructure for efficiency and scalability reasons or they could
be deployed to each host speciĄcally for more Ąne-grained control, in which case
they usually are low overhead-software that works closely with the host systemŠs
OS kernel or core. Naturally, network-based and host-based Ąrewalls can be used
simultaneously. In both cases, the Ąrewall has streamlined access to handle incoming
and outgoing network data packets as quickly and effectively as possible before they
are processed further. The actual Ąltering and limitation decisions are based on
rules placed on the Ąrewall software, where each rule can denote what action is to be
taken for each incoming or outgoing data packet if it has certain characteristic such
as speciĄc packet destination and source addresses or ports. More simplistic Ąrewalls
are stateless, which means that all rules are generally set beforehand, whereas more
complex Ąrewalls can be stateful, where the Ąrewall can track the state of different
connections going through it. Additionally, with stateful Ąrewalls, rules could be
changed on the Ćy and could even be triggered to come into effect or be disabled au-
tomatically based on some system events or detected traffic characteristics. It is also
good to note a couple of key terms with Ąltering: egress filtering and ingress filtering,
where with the Ąrst, Ąrewall stops traffic from leaving local network to outside based
on some criteria, and where with the second. Ąrewall drops unwanted traffic coming
from the outside to the local network. Very common case with egress Ąltering is the
Ąrewall dropping outgoing packets that do not have IP source addresses that belong to
the local network, which is a great help in Ąght against IP source address spooĄng.[46]

One additional, major decision with Ąltering and rate limiting is where the Ąrewalls
are actually located on the Internet infrastructure, where the defense location se-
lection was shown in Figure 18. If they happen to be near the attacker, the traffic
could be Ąltered out by the destination addresses which connects to the victim, but
as was noted, the traffic volume per attacker may be quite low if they are dispersed
over many different networks. Usually, however, the relevant Ąrewalls are on victimŠs
immediate vicinity, where source addresses could be used for the attacker identiĄca-
tion but where the Ąrewall often bears the full force of the attack traffic. Firewalls
could also be somewhere on the larger Internet, but the network nodes there may
have very limited capability to limit and drop traffic, as Ąrewall rule adjustments
at that level can easily affect innocent network users. As a Ąnal note, it is good to
understand that Ąltering on a local level doesnŠt prevent the systemŠs network link
for becoming fully saturated by attack traffic, where packets are then dropped at the
other end. Defense against this kind of attack basically means that Ąltering should be
propagated upstream. Perhaps the most relevant hurdles to enact effective Ąltering
beyond the victimŠs own system and his network are the distribution of system control
on the Internet and the communication issues between the victim and upstream
entities. The process to note management of some distant network about the DoS-
and DDoS-traffic they generate may be cumbersome, and it may take long time
before any preventative or blocking measures are taken, if they are taken at all.[87][91]



74

3.4.2 Basic DoS defense preparation and attack detection

A few basic proactive measures will be necessary to maintain web system security
and especially availability. For a start, systems should obviously enable and maintain
Ąrewalls so that non-critical traffic and especially unsupported protocols are easily
Ąltered out. It is also good to set sensible network rate limit from the very beginning
to avoid total system crashes due to abnormal amount of data traffic. Additionally,
the systemŠs security suite and authentication methods should be up-to-date to
avoid unauthorized access which could enable permanent system shutdown or other
compromising behavior. Although the easiest place to implement security changes
is the to-be victim system itself, it is possible to set up fail-safe systems and load
balancing if additional server resources are installed. Hybrid defense schemes should
also be implemented if possible, at least to an extent that the local ISP and could be
contacted in the case of a DoS- or DDoS-attack, where the ISP could do upstream
Ąltering on a larger scale for the problematic traffic. More detailed discussion on
structural changes on the network infrastructure and what hybrid defenses could
entail follow a bit later in this section.[31][87]

During the DoS- and DDoS-attacks, it is important to actually notice that something
is wrong and that the abnormal traffic does not come from regular users, which then
gives the victim a reason to enact additional defense measures on top of proactive
Ąltering rule setup for example. One could install advanced intrusion detection
systems to look for masqueraded attack traffic and set some DoS-threshold for the
network link. The most straightforward attack indicator and detection starting
point would then be the incoming traffic level going beyond this normalcy threshold.
Reaching this limit could just mean a surge of normal users, though, but it is logical
to start thinking about defensive measures at this point, as further traffic will degrade
system performance. The previously mentioned stateful Ąrewall could have traffic
reaching this threshold as a trigger event, and it could also mean that the system
state goes to place, where traffic needs to be examined more closely and the Ąltering
is done accordingly. In addition, it is wise to gather information about previous DoS-
and DDoS-attacks, where they might have speciĄc, recognizable features or processes
which can be identiĄed quickly.[31][87][108]

If the victim has lots of computing resources in his disposal, it is possible to utilize
more advanced attack detection methods that are based on the automation of at-
tack traffic. With DDoS, the participating bots usually have scripted behavior and
synchronization scheme which could make their attack traffic distinguishable from
traffic generated by human users. In waveform analysis for example, the spectral
components of the incoming traffic signal could be monitored for certain abnormal
frequencies. If the traffic would have lots of high frequency and medium frequency
components, that would indicate an attack, as lots of hostile nodes may try Ćood in
traffic in quick succession, in a scripted fashion. The automated attacks could also
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be noticed by relying on statistics about the average user behavior that has been
gathered over time, where client behavior per Ćow is stored as time-series data in
the time domain. The system could then monitor the behavior of incoming Ćows
and detect abnormalities based on the expected client behavior near the DoS- or
DDoS-attack traffic starting point. A practical example of this would be utilizing a
cumulative sum (Cusum) algorithm, where Cusum calculates the deviation between
ongoing trafficŠs local time-series average and the expected time-series average. Flow
characterization is usually based on the Internet- and transport layer headers, so it
may be necessary to aggregate this information for clusters. This would then make it
easier for machine-learning algorithms to detect Ćow anomalies and do general traffic
analysis on a per cluster basis, where the problem dimensions are reduced.[108]

The automated non-human like behavior of the attackers can also be used in the
defense on the application level. Attackers could be detected by embedded challenge-
response tests, such as identifying some object on a given picture when the web
content on HTTP servers is accessed for example. In this case, the bot could not give
out legitimate response to the challenge, as complex image recognition is hard to
implement with simple and quick algorithms. In addition, web content could include
items that are actually not shown on the screen such as objects that are marked to
be invisible in the web page code. System would then notice bot behavior as they
would interact with this code, as their behavior could be based purely on parsing the
web site code instead of acting on what the code represents.[87]

3.4.3 Defenses against SYN flood

A bit of a special case with the DoS- and DDoS-attacks and defenses is the SYN
-Ćood. It is difficult to utilize strict Ąltering with TCP SYN packets, as harsh limits
there would eliminate legitimate TCP connection formation. In many cases, it is
also difficult to base user behavior analysis just on a single initiating SYN packet.
Simple workarounds involve reducing the time the receiving system waits for the
respective ACK but this can only offer limited help, as legitimate clients would also
need some time to Ąnish up the TCP handshake due to network delays and congestion.
Therefore, two more sophisticated defense mechanisms have been developed to limit
the creation of half-opened bogus TCP connections on the server side, which are the
use of SYN cookies and the use of SYN proxies.

SYN-cookies base their functionality on the server using speciĄcally crafted TCP
message sequence numbers which are generally used to keep track of the TCP message
ordering. As the client Ąrst send the SYN message, the server will not fully enable
the half-open TCP connection for the OS SYN queue, but sends back a SYN-ACK
with the initial sequence number based on the following t, m and p values, where
they a calculated as follows:

• Parameter t would be a slowly increasing timestamp value
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• Parameter m would be maximum segment size of the system SYN queue entry

• Parameter p would be a cryptographic hash from t value and the source and
destination ports and source and destination IP addresses which are used with
the connection

The actual forwarded sequence number would then be a 32-bit concatenation of a
5-bit value of t times modulo 32, a 3-bit value denoting m and a 24-bit hash p. If
the server then receives an ACK message with the properly incremented sequence
number based on the crafted, initial sequence number from the server, the server
can add the connection to the SYN queue as it is thought to be legitimate. This
is basically a challenge-response scheme, where some extra effort is required from
the client before resources are fully committed to him. A downside here is that the
server will disregard possible TCP options that would be communicated with the
initial SYN, which may limit how well each connection would perform.[109][110]

In contrast, the SYN proxy will act as transparent proxy entity between the client
and the server to validate the client before the service allocates full resources to the
TCP connection. The connection formation in this case is illustrated in Figure 19,
where it is assumed that the SYN proxy has quick access to the server it protects.
After receiving the initial SYN message, the SYN proxy will note TCP connection
parameters and then sends a SYN-ACK response back to the client on behalf of the
server. Client will then respond to the SYN proxy masquerading to be the server
with an ACK message, if heŠs legitimate. The SYN proxy can now connect the SYN
and ACK messages from the client and notices that the client response is valid. It
then proceeds to do the 3-way TCP handshake with the server on behalf of the
client, using the data from the original SYN message. After this procedure, the
actual TCP data transfer can begin between the client and the server. The upside
here is that there are less limitations to the TCP parameters compared to using
SYN cookies. It is good to note that SYN proxies can be done either as separate
servers in front of the protected server or within the protected serverŠs operating
system kernel. If the SYN proxy is totally separate, it could leverage more computing
resources, but it then needs to adjust the TCP message sequence numbers to comply
with the TCP sequence numbers of the server it protects, as the server chooses
these numbers independently. With the SYN proxy residing essentially as a separate
network management process in the server, this sequence number adjustment can be
more immediate and straightforward, but the proxy will then tap into the serverŠs
own computing resources.[111]

3.4.4 Defense by routing configuration and network restructuring

The possibility to adjust network structure to help against DoS- and DDoS-attacks
was mentioned earlier in this subsection and what this actually means is changing
the network topology to add more physical resources to the local system or to the
wider network. The Ąrst point here is the adoption of fail-safe mechanisms which
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Figure 19: TCP 3-way handshake with SYN proxy

usually means running back-up servers where traffic can be directed if the original
server goes down. In addition to the installation of the actual servers, this also con-
nects to routing and DNS, as this means adding optional routes and updating DNS
information dynamically in the case of service downtime, if the back-up servers have
different IP addresses. Another option is to add more servers, Ąrewalls and routers
to the system on a permanent basis to achieve load balancing. Here the incoming
traffic would be split over these new servers, so that incoming traffic quantity that
did overwhelm 1 server for example would not overwhelm 3 or 5. Depending on
how the addressing is handled with these new servers, there may be a need for some
load balancing schema for routing that will then split the traffic equally among the
servers.[87][91]

Far more complex solution would be to add a traffic absorption overlay system on
top of existing network infrastructure. There the service could not be accessed
directly, but there would be various levels of proxy machines, where the actual service
address and connection would be established only after the client has successfully
queried a randomized sequence of these proxy entities. Obviously there could be
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large connection establishment delays and deployment issues, but this may be a
suitable option for small, critical web services.[112]

For more practical traffic absorption, rerouting mechanisms or cloud services could be
used. It is possible to use multihoming, where there are different route possibilities
towards the service and the routing data is dynamically updated to lead some or
all of the problematic incoming traffic to either black hole addresses that will just
receive the traffic and do nothing or through an over-provisioned cloud service which
can handle large amounts of traffic. Usually re-routing requires some signaling in the
network, as the existence of an attack needs to be communicated to other network
nodes in order for the route updates to trigger. As was alluded earlier, this links to
the hybrid DoS- and DDoS-defenses, where multiple sections of the network infras-
tructure take part in detecting and dealing with the DoS- and DDoS-attacks.[87][91]

3.4.5 Hybrid defense and upstream traffic filtering

The most effective way to combat DoS- and DDoS-attacks is to combine both proac-
tive and reactive defense methods on many locations on the network infrastructure
to form a good enough level of overall security, as each point of defense has its own
strengths and weaknesses. The key point here is the communication between defense
systems on each location, so that for example the immediate router near the victim
or the victimŠs system itself could send information about the DoS- or DDoS-attack
to upstream services, such as the nearest AS outside local network. This information
could then be propagated to each AS further on the path towards the attacker as
is seen on Figure 18. There are no widely used standards for hybrid DoS- and
DDoS-defenses but various commercial actors have set up their own systems, which
mostly try to leverage cloud resources. Unfortunately the exact nature of these
defense systems is usually a commercial secret, but some basics of the state-of-the-art
in this context are available from recent patents.[87][91]

For many modern hybrid defense schemes, cloud resources can be used as reverse
proxy servers where the access to the actual service seems to work normally but the
communicated data is actually routed through this reverse proxy. These proxy nodes
are generally well-provisioned with enough link bandwidth and computing resources
to do effective DoS- and DDoS mitigation, helped by information about the DoS- and
DDoS-attack characteristics received from elsewhere in the network. Two examples
from industry, from Arbor Networks, Inc. and from CloudĆare, Inc. respectively,
will illustrate the workings of the hybrid DoS- and DDoS-defense. The basics of the
Ąrst example, utilizing specialized DoS scrubbing centers, are shown in Figure 20.

In the aforementioned system, there are network traffic sensors placed on key lo-
cations on the serviceŠs immediate vicinity where there are sensors on the local
network router and, if it is permitted, sensors on the serviceŠs ISPŠs network routers.
If sensors detect abnormal data traffic such as impending DDoS-attack, they can
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Figure 20: DoS-scrubbing system architecture

signal speciĄc upstream entities for routing adjustments in an on-demand fash-
ion. For example, in the victimŠs local router, there could be a separate device
or software which does port mirroring on the router and can then accurately de-
termine what kind of traffic goes on and if some traffic rate threshold is exceeded.[113]

The sensor devices can be either DNS system components or speciĄc BGP routers
which then notify other system nodes about the DoS- or DDoS-attacks via UDP
messages. In the case of DNS, the DNS database can be updated dynamically to
change the service domain name to direct to the DoS scrubbing center address, at
least until the sensors notice that the attack has stopped. Another option is to utilize
BGP route injection, where the sensor signaling instructs speciĄc BGP routers to
adjust their routing databases so that the IP address of the service is advertised to
be reachable via route by which the DoS scrubbing center is located. For example in
Figure 20, the ISPŠs area border routers could withdraw the route advertisement for
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the clientŠs local network and simultaneously the AS where the scrubbing center is
located would advertise that the path to the service is through it.[113]

The scrubbing centers are servers hosted by a cloud service that should have ample re-
sources to deal with the incoming DoS and DDoS-attacks. As the sensors instruct the
routers or DNS system to enable rerouting, they inform the scrubbing center about
the attack traffic by sending traffic Ąngerprints such as problematic IP addresses and
port numbers, among other characteristics, which then help the center to Ąlter and
rate limit the relevant traffic. The centers could also employ more advanced defense
measures such as parsing application level data from the traffic and doing additional
Ąltering based on that. With DNS system adjustments, the scrubbing centers should
obtain and utilize the old IP address of the service which is then used as an initial
destination for all incoming data traffic towards the protected service. The sanitized
traffic is then routed towards the actual service with the scrubbing center using the
new adjusted IP address of the protected service instead of the old address. On the
other hand, the BGP method requires tunneling between the scrubbing center and
the client service, as directing cleaned traffic to the client via normal routing means
that traffic will just return back to the scrubbing center. Tunneling protocols such
as Generic Routing Encapsulation (GRE) allow the traffic at the scrubbing center to
be encapsulated and a point-to-point link to be created between the client and the
center over IP, through which scrubbed traffic can then pass.[114] In this latter case,
the client would have speciĄc IP address for this tunnel endpoint that the scrubbing
center knows, so that the tunnel can be established easily.[113]

The second example hybrid defense scheme is presented in Figure 21. Here the
clients from the Internet will always connect to speciĄc reverse proxy servers which
pass the traffic to the actual service. The proxies are controlled by a central control
server, and both the proxies and the control server can feed data to the DNS system.
Similarly to the previous case, the DNS system can be updated dynamically, where
the proxy servers may notice abnormalities in the client behavior for example when
DDoS-attack raises the ongoing traffic rate to go beyond some normalcy threshold.
This would then lead the affected proxy to notify the central control and the DNS
system to adjust the DNS resource records, so that the IP address under attack will
be a black hole address and the actual service is allocated a new IP address. In the
same manner, if some speciĄc IP is under attack without the involvement of the
DNS, the IP address can again be changed so that service is allocated a new one,
which is taken into account in the DNS system, and the previous IP address is then
set to be the black hole address. This requires that the service has access to address
pool of decent size and also that the proxy servers are able to adjust the service
IP addresses on the Ćy. Additionally, if multiple domain names point to a single
IP address, the system has the option to distribute additional IP addresses to each
domain name, so that possible DDoS-traffic directed to all of these domain names is
split over multiple IP addresses.[115]

Important feature with the system from Figure 21 is the possibility to distribute
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Figure 21: Proxy- and DNS-based hybrid DDoS-defense

proxies with anycast addresses, where the proxies are located on distant geographical
areas. With anycast IP addresses, multiple network entities may have the same IP
address, where the clients are actually routed by normal Internet routing rules to the
nearest node that has the respective destination anycast address.[71] This enables
the proxies to maintain information on expected client IP source addresses, where a
proxy in a speciĄc region should only get clients from that area, and where sources
from elsewhere could be considered spoofed and could be Ąltered.[115]

The second example system has also scrubbing center-like functionality, where it
maintains separate DoS- and DDoS-prevention modules, which could be hosted in
a separate location. If the DoS- or DDoS-attacks are persistent, in a sense that
the attack traffic will follow the service to the new IP address as the old address is
changed to point to nowhere, the system could redirect traffic to the service to go
through the security module. These systems have same qualities than the scrubbing
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centers in the Ąrst example, such as ample network bandwidth, good processing power
and link buffers with large capacity so that high traffic volumes are easily processed
and there is an option to do Ąltering and rate-limiting based on the application level
data on the network Ćows.[115]

Finally, the proxies and security modules in the latter example have the option to
enact a challenge-response scheme to differentiate bots from real clients. The proxy
server could utilize image- or reading comprehension-based tests that were mentioned
in the earlier subsection. Example tests could include identifying objects in a picture
or deciphering morphed text, both of which are hard to automate with computer
algorithms, at least in a rapid fashion. These tests would then be embedded to inter-
mediate web pages that are located at the proxy, where access to the actual service is
only granted after a client passes the challenge. Other differentiation methods could
include embedding complex computational tasks to the intermediate page, where
commonly used web browsers would quickly solve the task but automated scripts
designed for simple page retrieval would not.[115]

As a general note, the DNS record adjustments that hybrid defense mechanisms
use have lot in common with Content Delivery Network (CDN) basics, and it is not
that surprising that many commercial entities that offed DoS- and DDoS-defenses
also offer CDN services. With CDN, DNS address resolution is based on the DNS
clientŠs IP source address, where the resolved IP address for some service hosting
video content for example is chosen to be as close as possible to the client in network
topology terms to reduce network delay. Hybrid defense mechanisms can also enact
data caching at the proxies which comes from the CDN playbook. Important service
content could be cached at proxy servers during DDoS-attacks to enable legitimate
clients to access this content quicker.[115][116]

3.4.6 Follow-up measures

From a technical, system-speciĄc perspective, usually, the worst damage that DoS-
and DDoS-attacks can cause are certain periods of service downtime where the
recovery is possible with just a system restart. This would mean that the aftermath
involves mostly trying to learn from the attack in order to identify similar attacks
quickly in the future and to track down the attackers by the network traffic trace-
back. At least this is the case for somewhat detached web services, but the situation
would be quite different if services that would control real life infrastructure and
transportation would go down even for short duration.

A critical thing for improving the victimŠs system security is to keep relevant logs
about the ongoing data traffic and system behavior, preferably at all times, while
the system is running. This will make it easier to go over the experienced attack
traffic patterns in detail and will also help observing if some system components
were susceptible to high loads and went down unexpectedly. One additional way
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to examine past DoS- and DDoS-traffic is the backscatter analysis, where spoofed
IP source addresses will lead to the DDoS-victim sending replies to these spoofed
addresses, which are often randomized. If this backscatter data is monitored further
on the network, it could be used to roughly note attack magnitudes and durations,
if the victimŠs own system didnŠt have sophisticated logging of traffic enabled for
example.[31][87][117]

A very important factor with DDoS- and DoS-attacks is actually identifying the
attacker which can then lead to legal actions against him. This is when the attackerŠs
actual IP address should be found out so that the ISP that would usually provide this
address would connect the respective address to a person. This is unfortunately any-
thing but easy in most cases. For one, the attacker could have used address spooĄng
and reĆection in conjunction with a botnet, and even if the botsŠ identities are found
out, they could still be far removed from the actual attacker. Taking the infected bots
off from the attackerŠs grasp is a start, though, and this is where actual IP traceback
methods could help. The major categories of IP packet tracing are packet marking
and link testing. With packet marking, routers on the traffic path add source path
information to packets they receive and forward. This could then be used to track
the original source, depending from how far the routers started to include source
data. With link testing, the routers would go upstream, node-by-node, starting from
the victim, where at each step, the router queries upstream routers about the traffic
source. This would likely require the routers to keep at least short-lived logs of traffic
they have processed recently. Both methods have big implementation challenges
as they introduce traffic overhead and it is difficult to get all or even majority of
the network operators to update or adjust their systems to support these measures,
when there is no clear beneĄt for them to do it. In conclusion, with more careful
attackers, actually reaching the attack originator is often not feasible, but at least it
is usually possible to cripple the DDoS-related botnets to make it far more difficult
to enact large scale DDoS-attacks.[87]

3.5 The Realm Gateway and Linux network security basics

In order to Ąnd out new, applicable security system solutions against DoS- and DDoS-
attacks, the Realm Gateway software concept was brought up in the Introduction-
chapter. The Realm Gateway is a Python software that runs on the Linux OS and
combines the functionality of a DNS resolver, a DNS server and a NAT service, and it
can act as a network gateway to a separate web service in some private network, which
is supposed to be protected from DoS- and DDoS-attacks while still being accessible
from the Internet to legitimate clients. For handling the network security and address
translation at the gateway, Realm Gateway relies on the Linux NetĄlter framework,
which offers access to OS network functions, and is used to bring up and adjust the
systemŠs Ąrewall and enact port forwarding and address translation decisions.[15][118]
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3.5.1 Linux Netfilter

The foundation of Linux system security is the user authentication and the respective
privilege limitation of users by the given authentication credentials. Linux OS main-
tains the user passwords for the system in a hashed form, which are only accessible
to the root user. The OS kernel will then compare given credentials to this list by
calculating the hash from the userŠs input password upon access attempt. As the user
gains entry, all programs, Ąles and directories in the OS have access parameters which
denote if a user with certain level of access is permitted to read, write, manipulate or
run these OS objects. This basically limits what users can do to OS components that
they shouldnŠt have control over. Linux OS can also be accessed remotely if it runs con-
nection services such as SSH server process. SSH for example enables users to connect
to the serviceŠs port 22 with SSH client, gain access to the system upon giving their
credentials and then give commands to the OS via an encrypted SSH connection.[119]

For many systems that are connected to Internet, the main purpose is not to grant
remote access to low-level OS items, though, but to offer up high-level application
data upon requests such as HTTP pages or DNS answers, or to route data to
another node in the network. In these situations, more Ąne-grained control over
incoming data traffic is helpful as these services should be usable by clients without
credentials to access the underlying OS. As has been discussed earlier, Ąrewall solu-
tions are used to enforce this control, and in Linux, this can be done with the NetĄlter.

The basic functionality of NetĄlter relies on intercepting ongoing network events in
the Linux kernel and then utilizing speciĄc networking modules which can register
callback-functions for these events. Callback-functions can receive other functions
and executable code as an input such as networking-related Ąltering or routing rules
which are then applied to the ongoing data traffic. The networking modules with
NetĄlter are ip_tables. ip6_tables, arp_tables and ebtables, where the Ąrst two relate
to handling IPv4- and IPv6 traffic respectively, and the latter two manage networking
on the link layer. The actual data traffic is controlled via rules which are organized
into rule chains which are stored in speciĄc rule data tables. Networking modules
then access these tables and look up relevant rules which are applied to the traffic
in a packet-by-packet manner. The rules in the rule chains can implement various
basic traffic shaping procedures such as packet Ąltering by dropping packets based
on IP source address or destination port, incoming packet rate limitations based on
similar criteria, packet marking, IP address changing and port forwarding.[118]

The relevant rule tables for most network traffic are raw, mangle, nat and filter,
and the connected rule chains are prerouting, postrouting, input, output and filter.
Figure 22 shows the simpliĄed IPv4 traffic Ćow through NetĄlter and also when and
where the aforementioned rule chains and rule tables are used. If the system doesnŠt
act as a NAT service, the incoming traffic goes Ąrst through the raw table and the
mangle table before the system makes a routing decision to either direct the packet to
higher-level application or to forward it to some other node in the network. In either
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case, going through the Ąlter table is an additional step here, where unwanted packets
are often dropped so they do not propagate further to the network or propagate to
the application level, where processing packets takes more resources. If the traffic
goes to a local process, the output path becomes more complicated compared to
simple packet forwarding. Basically, additional routing and rerouting decisions need
to be made as response traffic may be generated or ongoing traffic may be altered,
where the system has to check if the addresses for the new or adjusted traffic are
applicable. Finally, the output path offers various steps to do last moment changes
or Ąltering to the traffic before it is sent to the outgoing queue. In regard to NAT,
the source- and destination address mapping from port values to addresses and vice
versa is done with the nat table on input- and output paths, where NetĄlter utilizes
systemŠs separate NAT mapping database.[118]

Figure 22: NetĄlter IP traffic Ćow

As an additional feature to track data traffic per communication session such as per
TCP connection, NetĄlter maintains a connection tracking system. The conntrack
steps in Figure 22 show when NetĄlter determines and sets the data packetsŠ session
statuses, where the communication session is generally identiĄed by the Internet layer
protocol in use, the Internet layer source- and destination addresses, and the transport
layer protocol- and port information. This tracking scheme can help to maintain
NAT functions and also enables stateful Ąrewall properties which can affect Ąltering
and rate limiting for communication sessions. On a base level, the sessions can be
marked as ŤnewŤ, ŤestablishedŤ, ŤrelatedŤ, ŤinvalidŤ or ŤuntrackedŤ, where the mark
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name implies the status of the particular session. A demonstration of the tracking
can be the TCP connection setup, where the initial SYN message from a client to a
server that runs NetĄlter is marked to belong to a ŤnewŤ session. The SYN-ACK
reply and following ACK reply would then upgrade the session to be ŤestablishedŤ.
The following TCP payload traffic would be a part of this session and possible ICMP
error messages for this session would be a part of a ŤrelatedŤ session. NetĄlter can
then use the respective session ID to differentiate between various TCP sessions
of the same client, if TCP traffic to certain ports needs to Ąltered out for example.[118]

3.5.2 The Realm Gateway software

The basic deployment of the Realm Gateway service, when it acts as a gateway to
larger public network for some protected web service in a private network is shown
in Figure 23. The Realm Gateway itself is a Python 3 software [120] for Linux
OS that has been developed for the Aalto 5G project in Aalto University by Jesús
Llorente Santos with Hammad KabirŠs help for the network security design. The
Realm Gateway program code is available for download on the Aalto 5G GitHub
page [15], and it has three interconnected modules: DNS forwarder, DNS server and
NAT service. The modules can communicate with each other, and with the combined
use of the latter two, the main function of the software is to bring up a temporary
access point through the NAT to the protected service upon successful DNS query
for this service. The DNS forwarder and server modules also utilize dnspython library
for basic DNS message manipulation [121].[122]

Figure 23: Realm Gateway service protection

To elaborate on each module, the DNS forwarder acts as the Ąrst DNS contact
point for the protected service in the private network. The protected service can use
this module as a local DNS server for recursive queries for public network domain
names, if the service needs to access other services on the public network. The DNS
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forwarder can query the global or public network DNS systems for the requested
domains and can direct replies back to the protected web service, which can then
contact the public services through the NAT. In the context of this thesis, this is
not thought to be an essential part the Realm Gateway, as generally protected web
services would be relatively contained and would not initiate contact to the public
network side on their own that much.[15][122]

The DNS server module plays a larger role, as it is the part that actually makes the
protected service accessible from outside. The Realm Gateway DNS server works
as an authoritative DNS server for the protected web serviceŠs domain, where the
DNS queries to resolve the protected serviceŠs IP address would eventually lead to
the Realm Gateway. The DNS server module would then resolve these queries by
responding with an IP address from a circular pool of IP addresses available on
its public network side. This public IP address is then mapped to be ŤusableŤ for
connecting to the protected service by the DNS server module in conjunction with
the NAT module. The utilization of this address pool would make it harder for DoS-
or DDoS-attacks to predict the allocated IP addresses during the DNS resolution. It
is also possible to require additional procedures from the DNS client to make sure
that his intentions are valid, and that IP address allocation is not done in vain. The
DNS server module may require the client to repeat the DNS query with TCP, where
a successful connection establishment in this way would ensure that the query source
address is not spoofed. Additionally, the DNS server can send a CNAME DNS reply
with a randomized, long string being a part of the CNAME response, where a new
query with the given CNAME domain would resolve the actual service address via
the allocation process. This is essentially a challenge-response procedure, where the
Realm Gateway expects the client to respond with a new query based on the unique,
client-speciĄc CNAME response.[15][122]

As the client proceeds to contact the protected web service, the NAT module will
monitor this process, where the incoming payload traffic from client is sent to the
application level to be processed by the Realm Gateway code, where it is logically
linked to the clientŠs successful DNS query and marked to be legitimate. This marked
traffic is then passed to the NetĄlter, where it is allowed to go through the rest of the
system and where the nat table rulings will handle the address and port mapping
between the private and public address spaces. The Realm Gateway setup may
include enacting NetĄlter traffic rate limits for incoming DNS traffic, where the NAT
and DNS server module could be affected and where the goal is to prevent the system
from being overwhelmed on an application level.[15][122]

In Figure 23, an additional important component against DoS- and DDoS-traffic
with the Realm Gateway is the separate SYN proxy node. The SYN proxy works,
as was discussed in the previous section, as a proxy server to ascertain that incom-
ing TCP connections are legitimate, where the Realm Gateway node itself doesnŠt
have to maintain half-opened TCP connections. This will prevent spoofed TCP
traffic from reaching the DNS server module where TCP is used during the client
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validation. SYN proxy will also prevent attacker Ćooding the protected service with
TCP messages if he did manage to allocate IP address from the Realm GatewayŠs
circular pool legitimately and aims to use this address for the attack with spoofed
traffic. The downside of relying on SYN proxy to this degree is that it is not feasible
to provide secure UDP services behind the Realm Gateway. Attackers could send
spoofed UDP traffic towards the service if they have been allocated addresses to
this service already from the DNS process, where SYN proxy cannot handle UDP
traffic. Large majority of security-minded web services are based on TCP, though,
as it offers built-in mechanisms to maintain more reliable connections, so the is-
sues with UDP would not be that big of a problem with practical deployment of
the system. Providing TCP services behind the Realm Gateway would then mean
just blocking the UDP traffic altogether for the circular pool gateway IP addresses.[15]

It is also good to note that the Realm Gateway can utilize a separate HTTP reverse
proxy service for handling HTTP traffic, as can be seen in 23. The motivation for
the reverse proxy relates to modern web pages having content such as advertising or
embedded video which prompts additional DNS queries and network connections
when this content is accessed or used. This would create additional stress for the
Realm Gateway DNS module, if these additional connections would utilize address
allocations from the Realm GatewayŠs circular address pool. Therefore, the Realm
Gateway setup process can enable NetĄlter to mark and direct all HTTP protocol
traffic to go through the HTTP reverse proxy towards the protected service, bypassing
the circular pool address allocation in order to preserve system resources.[15][122]

In more advanced Realm Gateway deployment, load balancing is possible, as can
be seen in the setup in Figure 24. The goal of load balancing is to distribute DNS
query traffic and access allocation in regard to the protected service to multiple
Realm Gateway instances. In this case, there is a DNS relay component between
the last upstream DNS server and the Realm Gateway DNS server that is marked
as authoritative DNS server for the protected service and that will randomize the
queries between the multiple Ąrst-line Realm Gateways. The randomization process
makes it more difficult for the DoS- and DDoS-attacks to target speciĄc Gateway
based on the DNS query process results. As the DNS relay or custom DNS module
is a more lightweight service than Realm Gateway itself, it is able to handle DNS
query rates beyond the combined handling rates of a small set of separate Realm
Gateways. The workings of the custom DNS module are presented in more detail
later in this section.[123]

The Figure 24 also shows two important systems behind the front-end Realm Gate-
ways. The Ąrst is a router doing source-based routing, which enables load balancing
in the multiple network gateways-scenario. It is usually the case with services behind
a NAT that they would have only a single gateway address (the NATŠs private
side address), where the traffic directed beyond the private network is sent. With
multiple NATs acting as gateways, the problem is that with normal routing, the
return traffic from protected service to public network could be directed to the wrong
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Figure 24: Advanced Realm Gateway setup

NAT which has no state information about the connection and rejects the traffic. In
the showcased advanced setup, either the service or a nested Realm Gateway would
allocate a set of speciĄc IP addresses for the use of each front-line Realm Gateway,
where the traffic connected to this set of IP addresses would only use the linked Realm
Gateway as a path out. The actual private side routing can be done with a physical
router, but it is likely more feasible to do it with a virtual Linux node for example.[123]

In regard to the back-line nested Realm Gateway in 24, it is possible to use multiple
layers of Realm Gateway nodes in front of the protected service for more exhaustive
DNS client control and mainly to protect against possible threats in the private
network. The DNS process with the nested setup starts from the front-line Realm
Gateway passing the DNS query to the nested Realm Gateway, as the protected
service is marked as carrier grade in the front-line. The response is then relayed
back to the client via the front-line, where an access address allocation from the
circular pool is done at both gateways. Nesting can be done with or without the
load balancing setup, but the source-based routing adjustments become easier with
the nested gateway, as the address linking to front-line can be done there instead of
changing the actual protected web service conĄguration.[15]

Originally the nested Realm Gateway setup was designed to work using 1-to-1 or
many-to-1 schemes, where a single front-line Realm Gateway with high capacity
would serve either 1 or multiple back-line Realm Gateways. It is easy to imagine
realistic Realm Gateway deployments, where the front-line Realm Gateways would be
managed by ISPs for example and the back-line Realm Gateways could be placed on
the ISPsŠ clientsŠ home routers. During the writing of this thesis, the many-to-many
and 1-to-many Realm Gateway relationships were enabled by using source-based
routing, the custom DNS relay component and modiĄed Realm Gateway code, but
there are other options available to utilize these schemes. For instance, the Realm
Gateway software itself could be modiĄed more heavily in order to support the
many-to-many and 1-to-many designs from the get-go. Additionally, it may be
possible to enable multiple simultaneous front-line Real Gateways without custom
DNS relays, if alternative design would be preferable. This could be done with BGP
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routers between the Realm Gateway and the public DNS system by using Equal-Cost
Multi-Path (ECMP) routing. In this design, BGP routing process would direct
DNS queries towards different Realm Gateways by choosing a randomized path from
several options in a routing table. There may be issues related to more complex
multi-component DNS queries in this case, though, where BGP router software would
require custom modules to enable it to keep up some Ćow state information for
example [124].

Finally, in order to deter DoS- and DDoS-attacks, the Realm Gateway does client
reputation monitoring based on the clientŠs behavior during the DNS resolution
process, where the client identity is linked to the IP source address of the incoming
DNS query. The basic idea here is that if the load level is high on the Realm Gateway
node, clients who have behaved poorly can be rejected while benevolent clients can
still be served. As an additional security monitoring measure, the Realm Gateway
can also maintain whitelists, greylists and blacklists about external DNS servers that
direct queries towards it. Whitelisted servers are thought be trusted DNS services
that can guarantee that they and the connected network infrastructure nearby utilize
at least some network security features such as ingress Ąltering to limit the amount
of spoofed DNS queries. It is possible that legal contracts are made with the ISPs
that maintain these whitelisted servers to assure certain service level in the security
context for example. On the other hand, greylisted DNS servers, which can be most
public DNS servers on the Internet, are trusted only to a limited degree. ItŠs possible
that malformed or spoofed queries come through them, as the Realm GatewayŠs
controller has just limited inĆuence on these servers. To make Realm Gateway
accessible for clients in practice, however, these servers should be entertained at
least initially. If servers behave poorly or erratically, they can then be placed on the
blacklist, which means that the circular pool resources are denied for these services. It
is good to note that these lists can be manipulated dynamically, so that for instance
bad behavior from a greylisted server would then lead to it being blacklisted.[125][15]

3.5.3 Custom DNS program structure

The custom DNS server used in conjunction with the Realm Gateway in the thesis
tests is a Python 3 software running a combination of UDP and TCP servers in 4
processes and multiple threads, acting basically as a DNS relay. This software was
developed by the author of this thesis for the tests in this thesis, and similarly to
the Realm Gateway, it uses the dnspython library for DNS message manipulation.
The basic purpose of the custom DNS module or DNS relay is to direct DNS queries
from the public DNS system or global DNS system to the Realm Gateway and back.
During this process, the DNS relay can enable destination randomization, where the
DNS queries from the public DNS system are randomized to go to 1 Realm Gateway
from a given set of Realm Gateways for load balancing reasons. Additionally the
custom DNS can add ECS client subnet data based on the query source IP address
to the relayed queries, if this data was not added to the queries on the public DNS
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system earlier.[123]

The program structure of the custom DNS module on a base level is shown in
Figure 25, where processes 1, 2 and 4 utilize PythonŠs built-in SocketServer library
to set up UDP and TCP server functionality. Due to Python software limitations,
where threads cannot use multiple processor cores effectively, multiple concurrent
processes had to be used in this implementation to make the software scale better
when additional system resources could be used. This unfortunately brings about
some signaling overhead as data between processes needs to be transmitted through
queues.

Figure 25: Custom DNS program process and thread structure

The basic handling of incoming DNS queries goes as follows. First the process 1 UDP
server receives incoming messages which are directed to process 3, which actually
parses the queries and checks what the DNS query contains. The query can then
be forwarded either back to the process 1, to thread 2 there, to be sent back to the
client or to process 4 if it is to be sent to the Realm Gateway. If the TCP security
step is enabled, the client can contact the TCP server, ran by process 2, after it has
received the DNS reply with the truncated message Ćag up. Process 2 can then,
in turn, direct messages to process 3 for parsing and forwarding either back to the
client or towards the Realm Gateway. With the CNAME security step on, the client
does receive the CNAME challenge via the custom DNS eventually and he then
needs to answer it, which will result in the allocated address being communicated
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back to the client. Note that, as was mentioned before, the communication between
the processes happens via queues. This DNS relay implementation also has to store
the ongoing CNAME DNS message data in a dictionary data structure in order to
connect DNS request and replies correctly.[123]

The custom DNS software has options to set up the Realm Gateway DNS secu-
rity steps in any combination, and as was noted, to enable target Realm Gateway
randomization and DNS ECS use if needed. As is the case with Realm Gateway,
the custom DNS does work reasonably well, but it lacks various error-handling
functions and advanced memory Ćushing to handle accumulating CNAME queries,
among other things. Ideally, the custom DNS code would be ported to C, as this is
a bit more feasible task than porting the more complex Realm Gateway software
wholly to C or to some other lower-level programming language. The custom DNS
program code is publicly available on the Aalto 5G GitHub and contains instruc-
tions and comments which elaborate more on the technical details of the program.[123]



93

4 Virtual environments and simulating networks

The term virtualization in computing and networking refers to creating a virtual
system, based on some real system, which acts as being the real system. Virtual
systems such as virtual computing hardware and virtual data storage have many
practical uses, where the creation, maintenance and handling of security issues with
virtual systems can be much more streamlined and cost-effective for example than
dealing with actual physical hardware. The key concepts with virtualization in regard
to this thesis are the Virtual Machine (VM) and virtualized environment, where they
usually are a virtual, functioning software representation of some actual computer
running a speciĄc OS.[126]

4.1 Virtual machine concept

The key terms with VMs, virtual environments and hardware virtualization are the
guest, the host, and the software that will usually run the virtualization process
called hypervisor. An example structure of a VM setup is shown in Figure 26, where
the host is the actual computer system running the hypervisor that, in turn, runs
the guest VMs that may run different OSes than the host. The hypervisor, such as
OracleŠs VirtualBox [127], creates a system environment for the guests where they
see a software abstraction of the underlying hardware but they think it is the real
deal. This means that the software running on the guest OSes is basically isolated
to a sandbox environment, where it can access the actual hardware resources in a
very limited and controlled manner.[126]

Figure 26: Virtual Machine setup example

For network connectivity, the hypervisor will usually link the guest systems to the
hostŠs physical network interface via middle-man device. The common options include
setting up a NAT service between the guest and host, where the guests would be
in a private network space, or setting up a virtual bridge device, where the host
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interface is bridged directly to the guestŠs network connection. In the latter case, the
guest and host share the same network addressing space, and if the host would be
connected to the Internet directly, so would the guest be, with a global IP address
allocated to it.[128] Using bridges, be it virtual or physical, refers to connecting
network nodes together via link layer bridge device that will enable the connected
devices to share the same Internet layer network. Basically the bridge has its own
MAC (link layer) address, sharing this address space with the connected devices,
and it can then relay data between the nodes on either side of the bridge, simulating
a direct connection in the Internet layer.[129]

It was implied earlier that utilizing system virtualization with VMs offers many
beneĄts, especially with program testing in the context of this thesis. The sandbox
environment makes running problematic software more secure, as it cannot access
the host directly. The isolation and easy installation and re-installation of the guest
systems and their OSes also makes it quicker and more straightforward to test com-
plex software conĄgurations, as errors caused by program conĆicts can be minimized
and the whole system can be built from scratch many times over if some major
error brings the guest down for good. Finally, it is far more cost-effective to test
various basic network setups with VMs, as setting up and utilizing actual physical
routers instead of virtual routers would be far more expensive and would take more
time. One major downside with VMs is the resource use overhead of the hypervisor
program, though, which has to be taken into account if software performance tests
are done in virtualized environments.[126]

4.2 Linux containers

When VMs are run with hypervisor, the processing overhead can be a problem
because the hypervisor needs to manage the hardware-level abstraction for the guests.
Another option is to use more light-weight virtualization, if the guest OS can be of the
same basic architecture than the host, as is the case with Linux Containers (LXC).
LXCs are essentially Linux guests running on a Linux host, where the guests are
allocated their own process space, CPU resources, memory and disk storage. With
Linux, it is possible to do chroot operations, where the root location of the process and
its child processes is changed, which then limits what these processes can access [130].
The containerŠs own principal Linux OS processes and subsequent standard applica-
tions are run in this manner with Linux namespaces, so they are practically isolated
[131]. Other computing resources for the container can then be partitioned with the
use of Linux cgroups, where the processes of a guest can only use what is speciĄcally
allocated for them [132]. Also, It is good to note that LXCs are not VMs in the strict
sense but virtualized environments instead, even if they aim to do the same thing.[133]

Major boon with LXCs is that the hypervisor software that manages the contain-
ers can be very limited, which reduces the processing overhead of running guests
drastically. Generally, the LXC manager software will do limited monitoring on the
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guest processes so they donŠt do anything unexpected, but overall, the guests can
access host hardware resources in a more direct manner, as they share the same
OS functionality. Additionally, LXC environments are quicker to install and remove
because there is no need to abstract the hard disk storage for the container OS.
A new container can just split a part of the underlying hostŠs Ąle system for itself
instead. The downside with LXCs, in contrast to proper VMs, is the breaking of
the container isolation. It is possible that a user within the container could gain
access to underlying, restricted system resources or would be able to enter the hostŠs
OS Ąle system space by a software bug for example. To help defending against this
threat, it is important to limit who can access the guest systems, especially as a
root. It is also wise to run the LXCs in unprivileged mode, so that if a root user
in the guest escapes to the host, his identity is not root anymore which limits his
capabilities.[133]

4.3 Linux containers and network virtualization

The limited LXC hypervisor offers similar network connectivity to the containers
than more complex VM hypervisors. It would be possible to use a NAT service
between the host network interface and the containers which was one option in
Figure 26, but more suitable option for hosting publicly accessible web services in the
containers would be to use a virtual bridge to connect the hostŠs physical interface
to the containerŠs network interface. An example of this bridged setup is shown in
picture 27, where the network topology consists of a public network and two private
networks. The public network can be directly accessed by the host and the Linux
container 3, whereas private network 1 and 2 are only accessible by the correspond-
ing Linux container 3 interfaces and by the Linux containers 1 and 2 respectively.[133]

The key part of enabling networking with VMs and with LXCs is the creation of
virtual Ethernet devices. These devices have actual MAC addresses in the host
system, so data traffic can be directed to them by the hypervisor and by the host
OS. The virtual network interface of a container or VM would be a combination
of this virtual Ethernet device and an abstraction of a physical network interface
within the container or VM. In Figure 27, each virtual network interface with each
container is connected to an abstracted, standard network interface in that container
in this manner. As virtual network interfaces have MAC addresses, they can then be
connected to virtual bridges which simulate direct connections between the bridged
nodes. This would mean that if private IP addresses of a suitable scope are allocated
to Linux containers 1 and 2 for example, they can reach each other with IP, as they
would seem to be on the same network segment. Going beyond speciĄc network, such
as from private network 1 to private network 2, would require routing procedures
from the intermediate container 3, though.[133]

As data traffic on the Internet relies on IP, utilizing LXCs, virtual bridges and virtual
network interfaces offers a good way to observe Internet layer, transport layer and
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Figure 27: Networking with Linux containers

application layer network behavior in a contained environment. For example, a
high-level web service could be run in isolation within a container to limit possible
software conĆicts and the incoming data traffic through the virtual network interface
would be indistinguishable from traffic from an actual physical interface. For the last
note, there is one minor downside. Even if the general container management with
LXC is very quick, there can be some operational overhead with virtualized data
input and output operations (such as networking), stemming partly from the fact
that physical hardware can do actual circuit-level optimizations. For most network
traffic, this is not a big problem as the differences come more apparent only with a
quick succession of very small data packets.[133][134]



97

5 Testing a secure web service

To Ąnd out if the Realm Gateway software and customized DNS resolution process
could be used to help defend against DoS- and DDoS-attacks, three network testing
setups were created for this thesis. The Ąrst setup was run purely in Ubuntu Linux
VirtualBoX VM on a Windows host computer, where the network nodes were LXCs
in the Ubuntu VM, connected by virtual bridges. The second setup used a set of
6 Ubuntu Linux VMs that were hosted on a cloud service, where each VM had a
real, global IPv4 address. In the Ąrst setup with 1 Ubuntu VM hosting the whole
simulation setup, the LXCs within acted as protected web services, Realm Gateway
nodes, accompanied DNS systems, and clients for the protected services, where the
clients generated data traffic towards the service. With the cloud service setup,
different VMs in the cloud acted as clients, DNS systems, Realm Gateways and
protected services behind them, where the LXCs were set up for network nodes in
the respective VM, if necessary. Also, with the cloud, the client nodes generated
either legitimate or hostile data traffic towards the service, depending on the test.
The third and Ąnal testing setup was a set of 4 physical computers running Ubuntu
Linux, all connected to the same private network using a physical switch. In this
last setup, one computer would host the LXCs for the Realm Gateway and the
protected service behind it, another computer would act as the DNS system and
the remaining computers would act as clients. The relevant computer hardware and
software speciĄcations for the aforementioned setups, such as Central Processing
Unit (CPU) information and system memory amount are presented in Table 5.

In regard to the actual testing, the Ąrst set of tests involved validation procedures
to ensure that the Realm Gateway and the accompanied DNS and routing systems
would be able to handle common data traffic between legitimate clients and the
protected service. Further tests concentrated on measuring system responsiveness
and computational resource use under varying traffic loads. The Ąnal tests then
measured system performance when it was targeted by various kinds of DoS- and
DDoS-attacks. Note that when deciding on the IP addressing for the test scenarios,
Realm Gateway circular pool needed to have at least 3 IP addresses allocated to it
for the system to work properly, so this was taken into consideration [122]. The 4
testing categories are elaborated further below:

1. System validation for testing that protected service could be reached through the
Realm Gateway by legitimate clients utilizing UDP and TCP communication
and the simulated DNS system.

2. System delay testing for observing how long it would take to resolve DNS
queries directed to the Realm Gateway DNS server and how long it would take
for the client to contact the protected service through the Realm Gateway.

3. Measuring CPU and memory use for Realm Gateway node and the custom
DNS node when they are handling varying levels of incoming data traffic.
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Table 5: Computer and software speciĄcations for tests

System Hardware Software

Desktop host PC
for test setup 1

CPU: Intel 4-core, 3.2 GHz
Memory: 16 GB

OS: Windows 10
Hypervisor: VirtualBox 5.2
Guest: Ubuntu 16.04 VM
GuestsŠs hypervisor: LXC 2.1
LXCs: Ubuntu 16.04

Cloud VM for
test setup 2

CPU: Intel 4-core, 2.6 GHz
Memory: 8 GB

OS: Ubuntu 18.04
Hypervisor: LXC 3.0
LXCs: Ubuntu 16.04

Desktop host PC
for setup 3

CPU: Intel 4-core, 3.8 GHz
Memory: 16 GB

OS: Ubuntu 18.04
Hypervisor: LXC 3.0
LXCs: Ubuntu 16.04

Laptop host PC
for setup 3

CPU: Intel 4-core, 2.0 GHz
Memory: 6 GB

OS: Ubuntu 18.04
Hypervisor: LXC 3.0
LXCs: Ubuntu 16.04

Client laptop PC
1 for setup 3

CPU: Intel 2-core, 1.5 GHz
Memory: 4 GB

OS: Ubuntu 18.04

Client laptop PC
2 for setup 3

CPU: Intel 2-core, 1.8 GHz
Memory: 3 GB

OS: Ubuntu 14.04

4. System delay testing during various DoS- and DDoS-attacks, where attack
traffic would be generated towards the Realm Gateway and one would observe
the delays this causes for legitimate users.

The tests within each of the four categories are presented in more detail in the
following subsections where the respective test setup network topologies are also
shown. The results of these tests are then presented and discussed to some detail at
the end of each test category presentation. As a general note, all LXC containers
had unlimited access to underlying system resources with all tests. Additionally,
DNS system components were all Python programs, and Python version 3.7 was
used in running them as well as additional networking scripts with services and
clients if necessary. The Realm Gateways and SYN proxies were run with Python 3.5.

Finally, In regard to delay results presented later in this chapter, the Ągure format is
similar to all tests, where the bars in each graph show the incurred delay averages,
with different bars in a cluster denoting different setups which are also explained in
the Ągure legend. The dot/circle plot on these graphs then denotes the delay median,
and the cross plot denotes connection or name resolution failure percentages where
the value can be seen on the rightmost y-axis. Note that if cross plot is not present,
that means that no connection or resolution failures were noted. Resource use Ągures
are of similar format, but there, the y-axis values are spent CPU time and memory
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use average instead.

5.1 Validation testing

Validation testing was done using the test setup 1 from Table 5, where the whole
system of guest LXCs and virtual bridges in a VirtualBox Linux Ubuntu VM was
hosted on a Windows PC. These tests involved utilizing 3 different network topolo-
gies, with increasing routing complexity. The validation test setup 1 is shown in
Figure 28, where the blue squares note LXC nodes running either Realm Gateway
software, SYN proxy scripts or DNS servers, or acting as a router or as a client with
the respective communication tools to reach the protected service. The containers
were connected with virtual bridges and the network was separated to two distinct
segments: the public wide area network, simulating global Internet, and the private
network, protected by the Realm Gateway.

Figure 28: System setup with simple network topology for validation test 1

Using the setup in Figure 28, the clients could reach the protected service by Ąrst
contacting the public DNS server emulating the global DNS system, in order to
resolve the IP address for the service. The public DNS forwarded this query to the
custom DNS which then forwarded it to the Realm Gateway. If the client passed the
TCP and CNAME DNS steps successfully, the Realm Gateway then allocated an IP
address for the client from its pool of 3 public IP addresses meant for pass-through
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traffic. This address was then communicated back to the client via the DNS system
so that the client could contact the service through the Realm GatewayŠs NAT,
connected to the allocated public IP address.

With multiple Realm Gateways placed simultaneously in front of the private network,
the client could reach the protected service through each Realm Gateway. This
required some additional routing procedures on the private network side, as generally
nodes would only have just 1 network gateway. First, the custom DNS component
randomly chose the Realm Gateway for which to direct the queries for load balancing
reasons. Then, the selected Realm Gateway resolved a speciĄc protected service IP
address connected to it for the DNS process. This basically meant that the protected
service ran 3 different IP addresses, each of which was linked to just one of the 3
Realm Gateways. Finally. the traffic back from the protected service to the client
did utilize source-based routing in the router on the private network, which directed
traffic from a speciĄc service IP to the respective Realm Gateway, so that the traffic
reached a gateway that had the respective connection state up. Source-based routing
could be done with just basic Linux kernel routing functions and iptables, as they
make it possible to mark packets based on their source IP addresses and then direct
these packets to a speciĄc gateway address.

More advanced validation test setups are shown in Figure 29. With setup 2, the
clients tried to reach protected service in node server2 in the private network 2 and
with setup 3, there was a nested, additional Realm Gateway behind the Ąrst line
of Realm Gateways, where clients tried to reach protected service running on node
server1 on private network 1. The public network side with these setups worked
identically to setup 1 but there was additional routing complexity on the private
network side to emulate Realm Gateway deployment scenarios where it would need
to connect to the protected service through public internet.

To elaborate on routing here, as was the case with setup 1, the node router2 would do
source based routing in order to enable the use of multiple front-line Realm Gateways
simultaneously. With setup 2, the front-line Realm Gateways were each connected
to a separate IP address on the node server2. With the nested Realm Gateway in
setup 3, each of the front-line Realm Gateways were actually connected to speciĄc
IP address from nested Realm GatewayŠs the circular pool. In setup 3, the nested
Realm Gateway would allocate an IP address from the pool based on the DNS query
source address, as this would indicate which front-line Realm Gateway sent the query.
Note that the nested Realm Gateway required minor modiĄcations to the default
code base to enable it allocating certain addresses from its circular pool based on
the source of the incoming DNS query. Basically, instead of the standard starting
procedure, it created 3 instances of circular pool in this case, where each instance
was linked to 1 speciĄc front-line gateway.

To enable secure transmission over public Internet on the private side, the network
topology was set up with BGP communities in Figure 29, which essentially meant
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Figure 29: System setup for validation tests 2 and 3 with complex routing

security by detachment. The private networks 7 and 8 were thought to be trusted
networks connected to the Realm Gateway, where the BGP router bgp1 was a trusted
AS border router for these network segments. A shared BGP community was then
created between this router and the BGP router bgp2, acting as a AS border router
for trusted private networks 3, 2, and 1. Using this BGP community, the addresses
from networks 1, 2, 3, 7 and 8 would only be advertised within the community, which
meant that the ŤuntrustedŤ BGP routers bgp3 and bgp4 didnŠt have knowledge
about these addresses. This also meant that entities on ŤuntrustedŤ networks 4, 5
and 6 didnŠt have access to these addresses, hence the service detachment, if the
networks 4, 5 and 6 could be thought as global Internet residing between the trusted
networks in a very simpliĄed sense. In order to do actual BGP and OSPF routing,
the routing containers in the private network ran Quagga routing suite [42], where
the OSPF routers would use the nearest BPG routers as a gateway to wider network,
and where the BGP routers were all BGP peers with the added BGP community
limitations.
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The validation tests themselves were relatively straightforward as the listing below
shows:

1. Validation test 1 for the Realm Gateway setup with multiple access gateways

(a) Test for client access to protected service running UDP server through
Realm Gateway

(b) Test for client access to protected service running TCP server through
Realm Gateway

(c) Test for client access to protected service running SSH server through
Realm Gateway

(d) Test for client access to protected service running HTTP server through
Realm Gateway

2. Validation test 2 for the Realm Gateway setup with multiple access gateways
and advanced routing - Same access tests (a) to (d) for this as for validation
test 1

3. Validation test 3 for the Realm Gateway setup with multiple access gateways,
advanced routing and additional nested Realm Gateway - Same access tests
(a) to (d) for this as for validation test 1

The protected service listened for incoming UDP and TCP connections with Linux
Netcat program [135]. The SSH connection to the service was done by utilizing the
Linux OpenSSH server and the built-in Linux SSH client [136]. The HTTP web
page retrieval was done with Wget tool [137], where the protected service hosted
web pages using NGINX server software [138]. Note that the HTTP reverse proxy
could have been used to handle HTTP traffic with the validation tests but due to
the simplicity of the NGINX default page that was retrieved during the tests, and
due to technical issues with enabling the reverse proxy process, HTTP traffic was
directed through using the normal Realm Gateway DNS resolution and circular pool
access address allocation.

5.2 Validation testing results

All presented validation tests were done successfully, from 1-a to 3-d. With validation
tests 1-a to 1-d, with Figure 28, all the clients could contact server2 with all presented
protocols while the custom DNS server randomized the Realm Gateway during the
name resolution process. With validation tests 2 and 3 (from 2-a to 3-d), with Figure
29, all the clients on the public wide area network could connect to server 2 and
server 1 respectively with all presented protocols, again with the front-line Realm
Gateway randomization. Additionally, with tests 2 and 3, it was noted that client5
and server3 could not access private networks 1, 2, 3, 7 and 8.
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In principle this shows that the Realm Gateway supports at least the most common
network protocols successfully and works with the basic network secure service setup
of hosting a web service that would be accessed with TCP utilizing at least some
encryption and access control methods such as SSH. Additionally, the validation
test results show that it is possible to utilize multiple simultaneous front-line Realm
Gateways to do load balancing, although this requires additional routing setup in
the private network. Finally, it is possible to detach private network segments for
the use of Realm Gateway and protected service with BGP communities to enable
secure data transfer from the Realm Gateway to this service through untrustworthy
networks. This, however, requires a chain of trustworthy BGP routers that starts
at the gatewayŠs immediate network or AS border and continues to the serviceŠs
immediate network or AS border.

5.3 System delay testing

For system delay testing, resource use measurements and for the majority of the DoS-
and DDoS-related tests, the cloud setup shown in Figure 30 was used. The procedure
for the clients to connect to the protected services worked in the same manner as
with validation tests. To conserve computing resources with the VMs hosting the
Realm Gateways, the load balancing of the front line Realm Gateways was emulated
by setting up the protected service and nested gateways as two instances, where
ideally they would have been just one instance each, located on a shared private
network behind both the Realm Gateway 1 and 2, as was the case with validation
testing. Essentially, this setup would still showcase the effects of load balancing on
the front-line Realm Gateways, though. In a similar manner to the VM hosts for the
Realm Gateways, one VM in this setup hosted the custom DNS server running on a
LXC, protected by the SYN proxy. In regard to network connectivity with the cloud
setup, network delay for all VMs and LXCs to other entities in the cloud and in the
test setup was less than 1 millisecond.

The basic delay tests utilized only 1 Realm Gateway and respective protected service.
All tests were done with 3 different security setups, where 1 setup would have Realm
Gateway and custom DNS just using normal DNS, another setup would make custom
DNS ascertain client legitimacy with DNS response with the truncated message Ćag
up and subsequent expected DNS TCP reply and Ąnal setup with both the TCP step
and CNAME challenge enabled. With the delay tests here being done for legitimate
clients, the public DNS was set up to do the TCP step and CNAME step on behalf of
the clients, as for example, BIND DNS servers could be conĄgured to automatically
complete the aforementioned steps with recursive queries, if they can forward the
CNAME queries correctly back to the custom DNS and Realm Gateway. All tests
here used a Python network script for the client to send and receive DNS queries
and answers and subsequently contact the service through the Realm Gateway. In
delay tests, the custom DNS SYN proxy was also disabled. The tests themselves
were done in the following manner:
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Figure 30: Cloud service system setup

1. System delay test 1 for measuring the DNS name resolution time between the
client sending a DNS query to the public DNS server and then receiving a valid
answer from the Realm Gateway (with custom DNS server acting between the
public DNS server and Realm Gateway). The noted result is the average and
median from all successful attempts while discarding the highest and lowest
10% of the delay set. Additionally, the number of failed queries is also to be
noted with the client doing no re-tries for an attempt. The client query amount
per second is varied. To clarify, the VM client 1 would contact Realm Gateway
1 in Figure 30 here.

(a) Test the above with no added delay.

(b) Test the above with added 5 millisecond delay for the client 1 and the
custom DNS server network interfaces using Linux traffic control to emulate
more challenging network environment.

2. System delay test 2 for measuring the time between client 1 sending a DNS
query to resolve protected service IP address and actually contacting the service.
The service was a Python TCP echo server running on server 2. Otherwise the
tests here were similar to test 1.

(a) Test the above with no added delay.

(b) Test the above with similar added delay to test 1-b.
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3. System delay test 3, similar to test 1 but now with a nested Realm Gateway.
In this case the client 1 would contact server 1 through the two gateways.

(a) Test the above with no added delay.

(b) Test the above with added 5 millisecond delay to the client 1Šs network
interface, to public DNS serverŠs network interface and to the Realm
Gateway 1Šs private side network interface, in a similar manner to tests
1-b and 2-b.

4. System delay test 4, similar to test 2 but now with added nested Realm Gateway
(here client 1 would try to contact server 1).

(a) Test the above with no added delay.

(b) Test the above with added 5 millisecond delay in a similar manner to test
3-b.

Mainly due to server capacity limitations from Python implementation, which are
discussed more in Appendix C, care had to be taken to set the incoming query rates
to relatively low levels compared to commercial DNS server software such as BIND.
To avoid major application level server congestion, critical services usually employ
some kernel level rate limiting, which can be done with iptables for the LXCs running
the Realm Gateway. This limit was set to 200 queries per second, and tests here
and beyond would be within this scope to get more accurate information on the
application layer behavior, as going far above the aforementioned limit would induce
dropped packets due to Ąrewall rules or Ąlled link buffers.

5.4 System delay testing results

Generally for the delay tests, the Realm Gateway started to suffer notable resolve or
connection failure rates when TCP and CNAME DNS security features were turned
on and the incoming query rate went above 50 queries per second. This problem
became more apparent with the nested Realm Gateway cases, as the front-line Realm
Gateways need to use more resources to query the nested Realm Gateway about the
service address while simultaneously maintaining system security with the public
network clients and DNS systems. These were the reasons to limit tests to the rates
between 1 and 75 queries per second with non-nested setup, and between 1 and 25
queries per second with the nested setup. It is worth noting here, that this doesnŠt
indicate that the system couldnŠt handle DoS- and DDoS-attack traffic of similar
or far larger magnitude, as handling legitimate clients uses lots of server resources
due to the address allocation process, whereas just discarding illegitimate UDP DNS
queries from the get-go with UDP Ćood is far simpler. It is also the case that when
provisioning security systems, the capacity to handle attack traffic is often set to
much higher level (10-fold or even 100-fold) compared to the capacity to handle
simultaneous legitimate clients. This difference becomes more drastic, if the system
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in question wouldnŠt expect Ćash mob-type scenarios.

Figure 31: Delay test 1-a and 1-b results for DNS name resolution delay with
non-nested Realm Gateway setup

The results of delay test 1-a are shown in Figure 31, in the upper graph. It can
be seen there that adding security steps to the DNS process will incur additional
delays, but it is another question if these delays are dramatic enough to make the
system unfeasible to use. With ideal circumstances, with minimum delay, the name
resolution delays stay at very low level, with the whole process taking around 30
milliseconds at maximum, even with the higher loads. This is well within the bound-
aries of Windows or Linux OS DNS resolver timeouts, which are 1 second for the
Ąrst attempt with Windows, and 5 seconds for the Ąrst attempt with Linux systems,
generally by default [139][140].

If simulated delay is added to the system, some problems come about, though, as
can be seen in the lower graph in Figure 31. In this case, the clientŠs and custom
DNSŠs network interfaces had additional 5 millisecond delay, which caused some
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failed resolution attempts at higher query loads when both TCP and CNAME steps
where enabled. It is likely that this worsens as the network delays increase, but
ideally, at least the custom DNS component, Realm Gateway and the protected
service would be near each other to limit delays between them. Successful resolution
attempts were still relatively fast, though, as was the case with test 1-a. If DNS
resolution attempts fail, it is not as big of a problem as both Linux and Windows DNS
resolution processes do multiple attempts to resolve the domain name IP address
which can increases the success rates to connect to the actual service dramatically.

Additionally, it is important to note that due to the limited time-frame of Realm
Gateway address allocation upon successful DNS resolving process, it is not feasible
to set up Realm Gateway to a network topology where it takes 100s of milliseconds for
the client to contact the DNS system components and the Realm Gateway through
SYN proxy, or through multiple SYN proxies if the custom DNS has a separate SYN
proxy. As networks with these kinds of dramatic delays would make even phone
discussions problematic, this is not that big of an issue, as lesser delays should be
expected for most deployment scenarios.

The results of delay tests 2-a and 2-b are shown in Figure 32, in the upper and lower
graph respectively. From these, the same limitations become apparent as with delay
test 1, with the added network delay. It is noteworthy here that the Realm Gateway
itself doesnŠt cause large delays for the pass-through traffic, and the major hold-up
is the DNS process, as expected.

Delay test 3-a and 3-b results are shown in Figure 33, again, in the upper and lower
graph respectively. With nested Realm Gateway, the main difference to previous
delay tests is the decreased capacity. It was noted, especially with the TCP and
CNAME steps on, that the system had problems coping with traffic rates of 50
queries per second and up as the front-line Realm Gateways had to do additional
work when they forwarded incoming queries to the nested Realm Gateway. Delay
for successful resolve attempts stayed reasonable, though, as it was well below the 1
second threshold, even with all the DNS security steps on.

Finally, the results of delay tests 4-a and 4-b are presented in Figure 34, in the
upper and lower graphs. The results here mirror test 3-a, 3b and the non-nested
service connection delays, as the Realm Gateway itself doesnŠt affect TCP traffic
passing through that much, which is the case even with multiple consecutive Realm
Gateways on the traffic path. With nested Realm Gateways, there is additional
security for the protected service, especially if elements of the private network side
are not trustworthy, but the latter tests here show that there is a trade-off with
capacity with the front-line Realm Gateways as they have to do more work. As
a concluding note about delay tests and the somewhat limited legitimate query
handling capacity, it is good to understand that Realm Gateway is not really meant
to be an all-purpose security solution for any kind of web service, but it is meant to
protect critical services that have limited legitimate user base instead, where valid
query handling rates of roughly 10 queries per second should suffice quite well in



108

Figure 32: Delay test 2-a and 2-b results for delay for connecting to the protected
service with non-nested Realm Gateway setup

most cases.

5.5 Computational resource use measurements

The resource use measurements were done to test how much CPU time and system
memory Realm Gateway 1 and custom DNS server would use during the situation
similar to delay test 2-a with the varying query load, also with varying the DNS
security setups. The respective containerŠs base level resource use was also to be
included. Basically, the tests were as follows:

1. Resource use measurement 1, where containerŠs used CPU time is noted for 20
seconds during a period of varying incoming query load. Take average from
three separate measurements.

(a) Test the above for the LXC running the custom DNS.
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Figure 33: Delay test 3-a and 3-b results for DNS name resolution delay with nested
Realm Gateway setup

(b) Test the above for the LXC Realm Gateway 1.

2. Resource use measurement 2, where containerŠs used memory average is noted
for 20 seconds during a period of varying incoming query load. Take average
from three separate measurements.

(a) Test the above for the LXC running the custom DNS.

(b) Test the above for the LXC Realm Gateway 1.

5.6 Computational resource use measurement results

The resource use measurements were done while the custom DNS and Realm Gateway
were under a similar load as with the delay tests in non-nested cases. Here the results
show how much CPU time the LXC running either custom DNS or Realm Gateway
took during the 20 second measuring period, under varying legitimate query rate levels.
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Figure 34: Delay test 4-a and 4-b results for delay for connecting to the protected
service with nested Realm Gateway setup

The same was then done for memory use, but now instead of CPU time, the average
memory use during the 20 second measuring period was noted. As handling legiti-
mate queries takes a lot of resources, measuring the resource use related to this type
of traffic gives a good picture on what level the system operates on higher stress levels.

The resource use measurement 1-a and 1-b results are shown in Figure 35 for CPU
usage. One important note here is that the LXCs running the custom DNS and
Realm Gateway use CPU time in very limited manner on a base level or when the
Realm Gateway or custom DNS software is just running in idle manner or during
times of low incoming query amount. With the custom DNS server, the TCP and
CNAME usage will add to the CPU load and the same applies to the Realm Gateway.
Overall, the Realm Gateway demands more from the CPU, but this isnŠt surprising as
it is far more complicated software. In both cases, the estimated CPU use doesnŠt go
above 10 seconds which could be estimated to mean 50% use of processor resources,
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Figure 35: Resource use measurement 1-a and 1-b results

at least for one core. This basically means that there is some room for extra capacity,
but it is another matter if and how this unused processor power should be used. For
example, if a single software uses up processor resources completely, with modern
OSes, it will likely paralyze the system as various OS supporting functions cease to
work properly.

Additionally, results for the resource use measurements 2-a and 2-b for memory use
are illustrated in Figure 36, again in the upper and lower graph. The memory use for
the containerŠs base working level and for the software with both the custom DNS
and the Realm Gateway are modest and quite stable, at least if the software is to
be run in some modern network node with 1 GB or more of memory. What may
affect memory use further is the CNAME information storage, as the Realm Gateway
node for example needs to maintain the randomized CNAME query information to
compare it to the challenge answer further in the DNS resolution process. There is a
periodic memory Ćush process with the Realm Gateway, however, that will prevent
the memory use becoming abnormal in this regard. All in all, with both tested
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Figure 36: Resource use measurement 2-a and 2-b results

software, the CPU and memory use seemed to be within reasonable limits at least
with decently provisioned, modern servers.

5.7 System testing against DoS- and DDoS-attacks

The DoS- and DDoS-attack testing required third testing setup which is shown in
Figure 37, mainly for having more computing resources in a private network setting.
In this system, all servers were physical machines, depicted in Table 5, connected to a
shared physical Ethernet network switch with Ethernet cables. All connected network
interfaces supported speeds of 100 Mbit/s and above, and the delays between all the
servers and guest LXCs was below 1 millisecond. The desktop PC in this setup hosted
the Realm Gateways, protected services and SYN proxies, which obtained addresses
from the shared private network by bridging the containers to the desktopŠs physical
network interface. Additionally, one laptop hosted both the public DNS server and
custom DNS server on guest containers, again accessed by bridging the laptopŠs
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physical network interface to these containers. Finally, two additional laptops then
acted as clients.

Figure 37: System setup using small private network and physical servers

Majority of the tests presented in this subsection were done in the cloud setting
shown in Figure 30, though. The base idea with all tests in this subsection was to
generate attack traffic, mostly in the form of problematic DNS queries, towards the
custom DNS and Realm Gateway and then measure, in terms of connection delays,
how this affects client 1Šs attempts to connect to the protected service. To reduce
the load on the host VM for Realm Gateways, the DoS- and DDoS-tests were done
without using the nested gateways. Similarly to earlier delay tests, the protected
service was a Python TCP echo server. Generally, all DNS queries were for the
Service Fully QualiĄed Domain Name (SFQDN) on the Realm Gateway using a
circular pool of 3 IP addresses. In regard to the network setup, there were no added
delays and the actual tests were done as follows:

1. DDoS-test 1 with the cloud setup where system receives varying amount of
UDP DNS queries with spoofed source IP addresses and client 1Šs delay in
contacting servers 2 or server 2 and server 4 is to be measured, depending if
custom DNS is set up to load balance traffic with randomizing the target Realm
Gateway for queries. Test and attack duration is 2 minutes and client tries to
contact service every second, with each attempt having 2 re-tries in case of
failure with 1 second time-out. The average and median delay of successful
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attempts is noted. To elaborate further, here the custom DNS and Realm
Gateway have enabled the DNS TCP and CNAME security steps and the two
tests compare the case with traffic going against a single Realm Gateway via
the custom DNS and the custom DNS randomizing between Realm Gateway 1
and 2.

2. DDoS-test 2 with the cloud setup where a set of 10 attackers would resolve the
TCP step successfully during the DNS resolution but then wouldnŠt respond
to the CNAME challenge. Otherwise the test is similar to DDoS-test 1, with
the attack query amount being varied and the failed queries also being noted.
Bypassing the TCP step is simulated by the custom DNS skipping this step
and directing the queries straight to Realm Gateway for CNAME challenge.

3. DDoS-test 3 with the cloud setup where a pool of 65000 source IP addresses
is set for the attackers which simulates both a situation where every attack
attempt receives a new client reputation or attackerŠs last contact attempt was
so long ago that the reputation has returned to a new client level. Otherwise
the test is similar to DDoS-test 2.

4. DDoS-test 4 with the cloud setup where a set of 10 attackers would pass the
TCP and CNAME checks and then be allocated an access IP address from
the Realm GatewayŠs circular pool which is then left unused by the attackers.
Otherwise the test is similar to DDoS-test 2. Bypassing the TCP and CNAME
steps is simulated by the public DNS resolving these steps on behalf of the
attacker.

5. DDoS-test 5 with the cloud setup where 10 attackers send DNS queries to a
BIND DNS server hosted on the same VM as the public DNS. This DNS server
then sends replies directly to the Realm Gateway 1 which simulates a DNS
reĆection attack. During this time, client 1 tries to connect to server2. In this
test, there is no load balancing, but otherwise the results are measured in a
similar manner to DDoS-test 2.

6. DoS-test 1 with the cloud setup where 1 attacker sends TCP SYN messages
using hping software [92] at a varying high rate towards Realm Gateway 1Šs
circular pool addresses while client 1 tries to connect to server 2. The connection
delays and failed connection attempts are again measured in a similar manner
to DDoS-test 2. In this case, the SYN proxy should prevent the SYN Ćood
from affecting the legitimate client connections.

7. DDoS-test 6 with the small network with physical computers shown in Figure
37. Here the DDoS-attack and result measurement is similar to DDoS-test 4,
and instead of comparing the case with 1 Realm Gateway to load balancing
with 2, the circular pool address size of the Realm Gateway in question is varied,
while also varying the attack query rate. To elaborate further, physical server
2 acts as a legitimate client trying to contact server 1 hosted on the physical
server 1 through Realm Gateway 1 with circular address pool of varying size
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allocated from the private network address space, while the attack traffic comes
from physical server 3. All this traffic naturally goes through the public and
custom DNS servers hosted on physical server 4.

5.8 DoS- and DDoS-testing results

With the DoS- and DDoS-attack tests, the attack generally meant that the DNS
resolution was done only to a certain step and the attacker would not utilize the
allocated circular pool access address if the name resolution came to this point.
In order to emulate DDoS-attacks effectively with the limited amount of VMs in
the cloud, the public DNS server and the custom DNS server were able to turn off
the TCP security steps and/or the CNAME steps. This would make it possible
for the DNS system to emulate attacks that would appear to come from multiple
semi-legitimate sources that would appear to pass the TCP and CNAME steps
from the Realm GatewayŠs point of view. This was also facilitated by public DNS
forwarding information about the clientŠs IP address with DNS ECS, which would
then be forwarded to the Realm Gateway by the custom DNS. As a reminder, the
delay in the tests here was measured for legitimate connections from sending the
initial DNS query to contacting the protected TCP service, doing 1 query/contact
attempt per second during the 2-minute testing periods with 2 possible re-tries for
DNS name resolution.

Figure 38: DDoS-test 1 results where UDP DNS Ćood was used

The results for DDoS-test 1 are shown in Figure 38. The custom DNS could easily
handle attack rates up to 400 queries per second which is the combined iptables rate
limit of the 2 Realm Gateways for DNS queries. It seems that the TCP affirmation
step is a good way to deter basic DNS UDP Ćoods at least on an application level,
and the spoofed queries didnŠt even reach the Realm Gateway. Effect on legitimate
traffic was negligible with the delay average differences being within 1 millisecond. It
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is another matter what happens if the attack rate goes far above the possible iptables
UDP DNS limits of the custom DNS and the Realm Gateway. In that case, high
percentage of legitimate traffic could be dropped by the Ąrewall, depending on the
scale of the attack. Load balancing in this test didnŠt have any noticeable effect on
one way or another.

Figure 39: DDoS-test 2 results where DNS TCP step was bypassed

In regard to more advanced DDoS-attack, the results for DDoS-test 2 are presented
in Figure 39. In this test, the attackers appeared to pass the TCP step and didnŠt
answer to the CNAME challenge, while appearing to become from 10 different
subnets, separate from the legitimate client. Here the simulated attack rate scale
didnŠt go beyond 100 queries per second, as higher rates caused too many failed
connection attempts for the valid client. Smaller scale may not be as critical fault
here as one could quickly surmise as mounting large amount of attack nodes that are
able to Ąnish TCP communication setups is more challenging than just spamming
the network with bogus UDP traffic. Here 1 Realm Gateway could manage attack
traffic reasonably well up to 50 queries per second. After this point, the average delay
and failed connection attempts would increase a lot, although successful connections
could still be done within reasonable time-frame, generally under 500 milliseconds.

Load balancing seemed to help a lot with DDoS-test 2, making the connection process
work reasonably well even with 100 attack queries per second. Main reason for this
seemed to be the CNAME memory Ćushing procedureŠs temporary, slowing effect on
the Realm Gateway performance. With 2 Realm Gateways working simultaneously,
they would not necessarily Ćush memory at a same time, which would induce less
stress on the whole system during the Ćushing procedures. Additionally, the repu-
tation system seemed to contain the 10 attackers reasonably fast, but even if their
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replies were not handled fully, there was still an ongoing negative effect present on
the system performance.

Figure 40: DDoS-test 3 results where DNS TCP step was bypassed

The results for DDoS-test 3 are shown in Figure 40. With this test, the attacking
clients would appear to come from an unseen subnet with high probability. This
emulated the case where every incoming attack query would appear to be a Ąrst
query for the client or a query from a client whose reputation was reset back to
new client levels after a period of inactivity. The results mirror here DDoS-test 2
as the single Realm Gateway gets into trouble when the attack rate goes above 50
queries per second. Again, successful queries are done within reasonable time and
load balancing helps, especially with avoiding failed connections. At least based on
this test, the Realm Gateway seems to use similar amount of resources handling new
clients than handling clients with poor reputation, which may be a problem in the
system design.

In regard to even more advanced DDoS-attack, the results for DDoS-test 4 are illus-
trated in Figure 41. Here the attacker would pass both the TCP and CNAME steps
from the Realm GatewayŠs point of view with the public DNS behavior emulation. It
seems that this type of attack is a really bad problem for the Realm Gateway as the
system suffers larger delays and more importantly most of the connection attempts
for DNS resolution fail when the attack traffic rate goes over the legitimate client
query rate. Unfortunately, load balancing doesnŠt help much here. The root of the
problem is that the allocation process from the Realm GatewayŠs circular pool does
not scale, if the pool size is limited, as here the size was just 3 addresses.

For DDoS-test 5, the results are shown in Figure 42, where the attack traffic here
goes directly towards the Realm Gateway, as the attack would involve oblivious DNS
servers who might have direct access to the Realm Gateway. In a similar manner to
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Figure 41: DDoS-test 4 results where DNS TCP and CNAME steps were bypassed

Figure 42: DDoS-test 5 results where DNS reĆection attack was utilized

the previous test, the Realm Gateway gets into big trouble with very limited attack
rate. In contrast to the address allocation issues, here the Realm Gateway seems
to use far too many system resources to deal with erroneous DNS queries. This
implies that the Realm Gateway robustness should deĄnitely be improved versus
non-standard DNS queries compared to the ŤstandardŤ case of Realm Gateway
just receiving neat, recursive DNS queries that always contain the client subnet
address data. At least in principle, clearly faulty DNS queries such as responses to
non-existent queries, as is the case with DNS reĆection attacks, are relatively easy
to Ąlter out.

The last test with the cloud setup was DoS-test 1, or the SYN Ćood test with just 1
attacker sending TCP SYN packets towards Realm GatewayŠs circular pool addresses
with the SYN proxy being the defense measure. The results of this test are shown
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Figure 43: DoS-test 1 results where SYN Ćood was utilized

in Figure 43. For some reason, the SYN proxy script provided with the Realm
Gateway incurred lots of failed connection attempts for the legitimate users. At
least with higher attack rates, this makes it very problematic to utilize the proxy
script effectively as it hampers legitimate clients too much. It is possible that the
SYN proxy in the test was perhaps conĄgured poorly or it didnŠt fully work with the
given containers and VMs in the cloud, as there were many virtual network interfaces
present. This means that it is wise to do further testing with the given SYN proxy
with adjusted conĄgurations in different network setups or to choose a different proxy
implementation altogether, as it is an important part of the Realm Gateway system
to prevent TCP Ćood towards the DNS system TCP servers and towards the Realm
GatewayŠs NAT access addresses.

Finally, the results for DDoS-test 6, done with the small network setup with physical
servers, is shown in Figure 44. This test is linked to the DDoS-test 4, where it is
observed here, if increasing the circular pool size would help with DDoS-attacks
which are able to Ąnish up the DNS name resolution, passing the TCP and CNAME
checks and then not claim the allocated access address. It seems that by just in-
creasing the circular pool to size 10 will eliminate the connection issues that were
the problem with DDoS-test 4. This would imply that Realm Gateways should
be allocated large address pools during the network and system setup. This may
not be possible with public IPv4 addresses especially, so another option to help
with this kind of DDoS-attack would be to enhance the address allocation algo-
rithms connected to successful DNS name resolution. It is worth mentioning that
there is an existing alternative for Realm GatewayŠs circular pool allocation algo-
rithm, which is the airwall system that has been developed for the Aalto 5G project.
This system could be linked fully to the Realm Gateway in future as it circumvents
the address allocation limitations of the current Realm Gateway implementation.[141]

As a concluding note, there needs to be some improvements made for the Realm
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Figure 44: DDoS-test 6 results where DNS TCP and CNAME steps were bypassed

Gateway DNS message handling process and circular pool address allocation speciĄ-
cally. In regard to question if load balancing is necessary, having multiple Realm
Gateways in place helps in some scenarios, but to get the most out of them would
require signaling between the gateways to synchronize memory management.
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6 Conclusions

It is apparent that network service security is a very complex problem, where there
seems to be a constant struggle between the attackers and the defenders, as new
software and hardware exploits are found out and new attack methods are designed,
and then the defending side scrambles to Ąnd effective security measures in response
to these new threats. If web services utilize up-to-date software including access
control methods and communication encryption, the most apparent threat is indeed
various Denial-of-Service attacks which are usually distributed to come from many
network nodes.

In regard to the research problem, several tasks were accomplished. First, the valida-
tion tests with the Realm Gateway and the custom DNS module did show that it is
possible to detach critical services to private network space for additional security,
where they could still be accessed from the public network space using common net-
work protocols which makes the Realm Gateway and accompanied modules practical
at least to some degree. This is supported by the resource use measurements which
did show that Realm Gateway and the custom DNS use up reasonable amount of
system resources. Second, the Realm Gateway in conjunction with the custom DNS
did perform well against some DDoS-attacks which points it being a useful security
defense measure at least against certain threats that target web service availability.

At this point is good to note that no matter what kind of contained security software
is used, there may be no singular solution against all kinds of DoS- and DDoS-attacks.
All-encompassing defenses could require complex, networked systems working on
multiple layers in the TCP/IP model while also maintaining signaling schemes for
communication between components in the defensive system, as was showcased
with the state-of-the-art DoS- and DDoS-containment methods in Chapter 3. The
Realm Gateway by Jesús Llorente Santos can however be a good basis for secure
web services, especially as the Realm Gateway development is an ongoing process.
This is collaborated by earlier research in addition to this thesis, where the Realm
Gateway and related system principles have been successfully tested in detaching and
protecting web services and defending against certain types of DoS-attacks.[122][125]

Even if the basic idea of the Realm Gateway is sound, there is room for improvement,
as is the case with most complex software. Various issues that have come about during
the writing of this thesis are listed below and should be taken into consideration
when further Realm Gateway improvements are being designed:

• For one, the Realm Gateway seems to be still a work-in-progress software, so
there is a need to increase the robustness of the circular pool address allocation
procedure and the handling of problematic or erroneous DNS queries. Utilizing
the aforementioned airwall system alternative could help with this.[141]

• In a similar vein, it would be important to make Realm GatewayŠs DNS
resolution process more resistant to reasonable network delays, as it canŠt
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be assumed that every node in the system is within the delay range of 10
milliseconds or less. Code improvements and using alternative programming
language for the Realm Gateway and custom DNS implementation may help
with these issues as they connect to the limitations of Python performance
which is discussed in more detail in Appendix C.

• It is practical to set up the Realm Gateway system itself, but another question is
the co-operation of nearby DNS services. In order for the address allocation to
function, Realm Gateway relies on the DNS ECS subnet information to identify
incoming clients, so the DNS servers doing recursive queries just before the
custom DNS relay should be persuaded to send the ECS information forward.
Additionally, these DNS servers would need speciĄc conĄgurations to direct
DNS replies with the truncated Ćag up and DNS CNAME replies back to the
actual client instead of doing these steps automatically themselves. These
are not impossible tasks, but they would likely require the Realm Gateway
maintainer to purchase these services from the DNS maintainers or to get direct
control over the nearby DNS systems himself.

• It would be good to ensure the proper working of the SYN proxy component, as
the testing in this thesis implied that the negative effect for legitimate clients
when SYN Ćood interfered with Realm GatewayŠs access addresses was too
drastic. As was discussed in Chapter 6, this may have just come from SYN
proxy incompatibility with the virtual machines and network components on
the cloud setup or from SYN proxy conĄguration errors.

• It would be prudent to support DNSSEC, as without DNS security measures,
MitM-attacks are possible, where attackers could forge replies coming from the
Realm Gateway or from the custom DNS.

• If custom DNS is to be used, it would likely be smart to establish permanent,
secure TCP connections between the Realm Gateway and respective custom
DNS node for DNS messaging to make it more difficult for attackers to spam
Realm Gateway with problematic DNS messages. This also involves setting up
proper Ąrewall Ąltering rules from the get-go to custom DNS server and Realm
Gateway to weed out traffic not related to DNS.

In additional positive note, Realm Gateway brings about very useful ideas for appli-
cation level defenses against DoS- and DDoS-attacks, and many beneĄts may come
from simple Ąne-tuning of the software implementation. As was also noted in the
previous chapter, having only limited capacity for legitimate clients may not be a
problem, as the purpose of the Realm Gateway system would be to protect critical
services which have limited user base and would not likely suffer sudden spikes in
incoming legitimate user connections. In most cases, the legitimate client amounts
can be easily predicted, and the service would then be provisioned accordingly with
additional capacity being reserved to handle DoS- and DDoS-attacks.
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It is also important to make a disclaimer that only limited conclusions can be drawn
from the performance tests done in this thesis with the Realm Gateway and with
the custom DNS relay. As testing was done in virtual environments, which intro-
duces processing overhead, one could get a better view of the system performance
and likely improved results, if additional tests would be done running the Realm
Gateway software on dedicated servers without virtualization. Some useful infor-
mation can be gleaned from the test results, however, especially when comparing
the different systems used in the thesis. For one, deploying nested Realm Gateways
will introduce additional, notable delays for contacting the protected web service,
and it is questionable if this is worth it, even if it brings about enhanced system
security. For another, the load balancing scheme improved system performance to
some degree, but to make better use of it, one likely has to develop signaling between
the Realm Gateways and the custom DNS relay, so that data traffic can be directed
away from nodes that are doing system maintenance operations for example. This
could mean that, at least with the current Realm Gateway code, it is not clear if
load balancing should be used on all deployments due to the added system complexity.

6.1 Future work

First, it has to be understood that the tests done with this thesis were certainly
not all-encompassing. Therefore, additional tests should be done with DoS- and
DDoS-traffic and general Realm Gateway and custom DNS performance with more
realistic network settings, where each network node would have at least some net-
work delay, as this would be the case when the gateway would protect actual web
service. Additionally, as was implied just before, the Realm Gateway and custom
DNS behavior should be tested in non-virtualized environments, with network nodes
that have two or more physical network interfaces to compare performance between
those and virtual network interfaces.

As a second point, one major future improvement would be creating a signaling system
between the Realm Gateways and the custom DNS relays. With the signaling, Realm
Gateways could exchange client reputation information in order to spread black-listed
client identities, so they could be quickly blocked at other Realm Gateways if neces-
sary. Another clear beneĄt from this type of signaling would be synchronizing memory
management between multiple Realm Gateways in a load balance setting, where
this information could also be passed to the custom DNS in order for it to reduce
traffic temporarily to a gateway that is currently Ćushing CNAME data from memory.

The signaling could be then extended to cover different upstream nodes such as high-
capacity routers, where there is a possibility to do effective, large-scale rate-limiting.
This would help against major Ćooding attacks, that would overwhelm Realm Gate-
way or custom DNS links and the respective, local rate-limits as problematic traffic
would be limited before it even reaches the Realm Gateway system. This would
not be simple and cheap addition, so it remains to be seen how feasible this type of
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solution would be.

In regard to practical use of the system, it would be beneĄcial to have more approach-
able real-time system controls in place, so that the Realm Gateway functions could be
adjusted on the Ćy, while also having concise documentation available on the Realm
Gateway functions and procedures. This also links to improving the Realm Gateway
DNS name resolution process against aberrant DNS queries as was discussed earlier.
It would also be wise to explore if the BGP ECMP routing design could replace the
custom DNS relays when load balancing is considered, if adding to BGP systems
would be more straightforward than adding additional components to the DNS system,

Finally, for improved system security, the Realm Gateway could expand the repu-
tation system and traffic monitoring to pass-through traffic. Currently, if the DNS
name resolution process succeeds and the client claims the access address, the Realm
Gateway doesnŠt really care what kind of traffic goes through if it passes the SYN
proxy. This may be problematic in the case of non-DNS application level DoS-attacks,
so at least a framework of noting or Ąltering out certain kinds of high-level traffic such
as abnormal rates of HTTP request for the same resource could be useful. Obviously,
this would incur even more processing overhead and it may be difficult to say what
kind of messaging exactly is to be noted or affected. There are also legal limitations
on what level the ongoing communication can be monitored or manipulated in a
public network.

As a concluding note, similarly to most software development cases, the Realm
Gateway, the accompanied SYN proxy and the custom DNS likely have bugs and
general limitations that could be ironed out and removed with diligent updating.
It can also be said that the Realm Gateway is an interesting and useful network
security concept, so there is a lot of potential in using it directly or getting good
ideas from it to other security system implementations.
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A Appendix - RIP and OSPF routing details

This appendix presents brieĆy more details about RIP and OSPF routing, where
differences were summarized earlier in Table 2. SimpliĄed RIP routing procedure
is presented in Figure A1 for a small example network topology. The RIP routing
table information is propagated by each node retrieving the current routing table
data from neighbors with UDP request and response messages. RouterŠs routing
table is then updated based on this data which can lead to the router adding new
entries to its table as it gets topology data further and further from the network
until eventually the whole network topology has converged to each router, where hop
count is used to measure distances. As this update process is done in a step-by-step
manner, the converging times may be high depending on the network size and the
interval of update messaging.[3, pp. 142Ű194][33]

Figure A1: RIP routing principles

The major limiting for factor using distance vectors is the counting-to-inĄnity problem
which may occur when there are sudden changes to the network topology. Simple
example in Figure A2 illustrates this issue, where routers R2 and R3 are suddenly
disconnected. Router R2 does notice the malfunctioning link and sets the destination
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inaccessible but at the same time router R1 still maintains that the distance towards
R3 is 2 hops through R2 which it then conveys to R2 which updates its routing
table accordingly. Router R2 now thinks that R3 is is available through R1 and
this is conveyed to R1. This back-and-forth messaging continues where each step
increases the hop count in R1 and R2 by 1 towards inĄnity if the process is left to
be. RIP does take this problem into account and initial defense against this issue
is setting the inĄnity value to 16 hops, so the nodes donŠt add hop values beyond
that. Additionally, RIP employs methods called split horizon and route poisoning
which limit the advertisement of routes back from one note to another and set the
malfunctioning routes to be advertised as inĄnite from the get-go respectively.[3,
pp. 56Ű82][33]

Figure A2: Distance vector routing and counting to inĄnity

For comparison, the OSPF routing procedure in simpliĄed form is presented in
Figure A3, again for a small example network topology. Here each node maintains a
separate link state database which is common for all routers in the network and is
set up when the network is initialized. The routing table is then calculated from this
database by the DijkstraŠs open shortest path Ąrst algorithm, where the resulting
table, which is speciĄc for each router, is used for the routing decisions. For updat-
ing data about the network topology, only changes to the link state database are
communicated by broadcasting update messages to all routers in the network, when,
for example, a router notices that a link has gone down. OSPF doesnŠt actually
use TCP or UPD for signaling but employs IP in more direct manner similarly to
ICMP. For IPv4, the protocol messaging is packaged straight to IP packets with
the IP header protocol Ąeld denoting that the message is for OSPF.[3, pp. 142Ű194][34]

As was presented in Table 2, there are clear reasons for using OSPF over RIP with
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Figure A3: OSPF routing principles

the cost of having a more complex protocol in use. The Ąrst major beneĄt is the
avoidance of loops as each OSPF router has access to the whole network topology
all the time and can then calculate routes avoiding broken links. Additionally,
the second beneĄt is the capability to use link costs for denoting route quality for
making more informed routing decisions with QoS in mind. Finally, there is a
beneĄt of faster routing table updating time as network changes, due to the link
state advertisement broadcasts instead of sending updates hop-by-hop.[3, pp. 142Ű194]

With both RIP and OSPF, the main issue is scalability, though. RIP is limited by
the hop count, whereas OSPF is limited by the resource demands for handling the
link state update broadcasts and for calculating the shortest path with DijsktraŠs
algorithm for large networks. OSPF has a workaround for enabling some increases
to network size with utilizing hierarchical structure from which there is an example
in Figure A4, where the network is divided to sub-networks. The idea is to aggregate
route information utilizing the CIDR network masking with the area border routers to
keep the link state databases small and to limit the amount of update message traffic.
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In the example, networks in Area 1 and Area 2 see only 1 route entry to outside
which are the respective border router gateways, which then forward outbound traffic
towards the correct destination outside their internal networks. This works for the
other direction too as the area border routers can aggregate their internal network
information to fewer routing table entries which are then communicated to their
routing neighbors outside. The area concept is essentially expanded to Autonomous
Systems (AS), as can be seen in the sections describing BGP in Chapter 2.[34]

Figure A4: OSPF areas example
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B Appendix - PKI and TLS principles

This appendix presents the principles of PKI and TLS, where the idea behind public
and private keys is explored further. Additionally, there is an overview on what
the PKI key distribution process involves. For a start, an example for public-key
cryptography algorithm is the Rivest–Shamir–Adleman (RSA), where the asymmetry
or the challenge to solve the private key if public key is known is based on the
difficulty of factorizing the product of two large prime numbers. In a more formal
manner, the RSA basis is

(me)d ≡ m (mod n), 0 ≤ m < n. (B1)

In the previous equation, the e, d and m can be thought as large integers, where it
is difficult to solve d, even if e, m and n are known. For encryption and decryption
usability, it is also good that reversing the place of d and e is possible, which implies
that

(md)e ≡ m (mod n), 0 ≤ m < n. (B2)

For the key generation for RSA, the d, e and n are calculated with the help of
randomly generated two random prime numbers p and q. Variable n would then be
pq, which is the modulus value and can be thought as the encryption key length.
After this, the e is chosen in a manner, that

gcd(e, lcm(p − 1, q − 1)) = 1, lcm(p − 1, q − 1) = λ(n), (B3)

Where lcm is the least common multiple or the smallest common integer which is
divisible by the two given integer values, and where the gcd is greatest common divisor
or the largest integer which divides both of the given values. The lambda-function
here would denote CarmichaelŠs totient function with the n as input. This would
then lead to

d ≡ e−1 (mod (λ(n)), (B4)

where solving d can be a long and problematic iterative process, if the key generation
parameters are chosen properly. The encryption scheme with public key e would
then be

c ≡ mem (mod n), 0 ≤ m < n, (B5)

so that encrypted text c is attained with plaintext message turned to integer with
using padding, where this adjusted message is denoted by m here. The process of
padding means that agreed upon, reversible padding scheme Ąlls the message to a
certain length, so that "empty space" is not encrypted as this would help in cracking
the encryption scheme. The message data can then be decrypted by solving

cd ≡ (me)d ≡ m (mod n). (B6)

Additionally, the signing of messages is based on

(he)d = hed = hde = (hd)e ≡ h (mod n), h = hash(m), (B7)
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where the hash denotes a suitable one-way hashing function that is used both by the
sender and receiver of the signed message, and where h is the calculated hash-value
from the plaintext m and the commutative properties of multiplication are utilized.
The verifying signature of some message would be formed by encrypting the hash
with d, in a similar manner to the case where somebody encrypts the message meant
for the private key holder with e. This signature value can then be decrypted with e,
where the resulting hash can be compared to the hash value that the recipient can
calculate from the received message text. If this hash and the decrypted signature
are the same, it means that the message was signed by the private key holder and
was not changed during the transmission.[75, pp. 283Ű376]

One major problem with public encryption keys is the proper distribution of said
keys, or rather the case of ensuring that the presented public key to some web service
is connected to the actual web service and to the private encryption key it uses.
If no additional measures are taken, it would be difficult for a client to contact a
legitimate web service, if multiple services are on similar domains and each offers
up some public key, claiming to be the real deal. To solve this, the PKI utilizes
a CertiĄcate (CERT) concept based on the X.509 standard, where a web server is
issued a signed CERT by a CertiĄcate Authority (CA), which connects the respective
service identity (usually a FQDN) to a speciĄc public key. The basic structure of a
system utilizing CERTs is presented in Figure B1.[74][142][143][144]

Figure B1: Basic PKI architecture

For the PKI base, the CAs form an authority chain, where the highest-level CA is a
trust anchor. The trust anchor will self-sign the CERT for itself, and then, generally
as a service, will sign the certiĄcates to CAs on the level below it, where each CERT
will also have a note pointing to the signer on the level above. This chain will then
continue towards the actual web service, denoted by the server in Figure B1, who has
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the CERT signed by the immediate CA. The trust anchors are usually well-trusted
and established Internet entities that often have monetary incentives to issue CERTs
in a proper and safe manner. To enable the CA validation checks to work smoothly,
trust anchor CAs have usually distributed their self-signed CERTs to a large num-
ber of Internet clients either via web browser installations or with OSes.[142][143][144]

In Figure B1, the Ąrst point is that the client would have received the CAŠs self-signed
certiĄcate, likely upon the overall initial setup of his computer. This CERT is then
found on the trusted CA list on the client, which is usually valid for a long time. The
second point is the server retrieving a CERT linked to it from the CA, usually by just
purchasing it for a certain, relatively long period such as for a year. Upon contacting
the web service, the client will receive the serverŠs CERT, and the client can then
check the CERT signature for validity based on the note about the assigning CA in
the CERT, when the respective public key is found from the clientŠs trusted CA list.
During this process, the CERTŠs expiry and revocation status should be checked,
which is usually done from a local cache which is updated regularly by the OS from
a CertiĄcate Revocation List (CRL) database maintained usually in some manner by
the CA. If these checks are passed and the CERTŠs subject matches the contacted
service, the client can then assume that the public key in the CERT would link to
the serverŠs private key, as intended.[142][143][144]

As the client can presumably trust the service after the CERT validation, the follow-
up is usually to form an encrypted connection, as sensitive information is to be
transmitted. Overall, this connection establishment is a two-stage process of a
handshake or session key exchange and the actual, encrypted data transfer which is
referred as a session. In PKI, it is often the case that the client would Ąrst validate
the server identity and if the client would need to authenticate to the server, the
credentials would be given after a successful handshake step to utilize the secure
connection. During the handshake, the client and the server will form a shared secret
key based on their public and private encryption keys. This secret is then used as a
shared encryption and decryption key for a symmetrical encryption scheme which is
used to encrypt the transmitted data for the remaining duration of the session, as it
is less complex to process, compared to asymmetric encryption scheme.[74][144]

For the session key exchange and session data transmission in Figure B1, protocols
like Transmission Layer Security (TLS) come in. The newest version of TLS, which
is built on top of the older SSL, is 1.3, and it is used generally in conjunction with
HTTPS and over TCP, whereas UDP connections can use Datagram Transport Layer
Security (DTLS) protocol [24][145]. With TLS, the aforementioned PKI handshake
procedure is deĄned, which establishes the shared secret that is to be used with
a supported cipher suite for communication encryption. The handshake, which is
presented in Table B1, is based on the Diffie-Hellman key exchange protocol where
the security foundations are quite similar to those of RSA, as they are both based on
the difficulty on solving the discrete logarithm problem. In this table, Values x and
y are the client and server public keys and the nonces refer to pseudo-random values
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generated by the client and the server, where one part of validating the connection
is the decryption of the server-signed nonce on step 2 with the serverŠs public key.
Additionally, message authentication code concept is used here to denote values that
can be used to verify message integrity. When calculating these codes to Ąnalize the
handshake during steps 4 and 5, the shared secret Sshared would then be

Sshared = gyx (mod n), (B8)

and with this value, the master secret Smaster to be used with the chosen symmetric
encryption scheme is

Smaster = hash(Sshared, label, Nc, Ns), (B9)

where pre-determined hash function is used on the client and server nonces Nc and
Ns, shared secret and pre-determined text label.[22][75, pp. 515Ű522][144]

As was implied in Table B1, TLS offers a selection of cipher suites to be used in both
the initial handshake, as the encryption cipher and to validate message integrity
during the session. In addition, the encryption key strengths are also negotiated
during the handshake process. TLS version 1.2, which is still widely in use, offers for
example multiple versions of AES for the symmetric encryption and also multiple
versions of Diffie-Hellman and RSA, some of which utilize elliptic curve cryptography
for even more security. The RSA and Diffie-Hellman differ to some extent, as RSA
is purely an asymmetric scheme, where Diffie-Hellman is a symmetric one with the
private and public key components. In any case, TLS is thought to be a hybrid
cryptosystem due to the handshake procedure and the following symmetric session
encryption that generally utilize different security mechanisms. It is good to note
that the previous TLS 1.2 could be made to use some insecure protocols during
the parameter negotiation and one major difference with the newer TLS 1.3 is the
removal of support for various, older cipher suites, where there isnŠt even an option
to select poorly, so to speak.[22][146]
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Table B1: TLS handshake process

Step Transmitted data
1 - Client → Server Client sends version data, session id, client nonce

value and selection of supported cipher suites to
the server

2 - Server → Client Server responds with the version data, same ses-
sion id, server nonce, selected cipher suite and its
CERT with the chain going to the trust anchor;
additionally, the server transmits at this point spe-
ciĄc parameters which are used for calculating the
shared secret and for validating the connection le-
gitimacy: values g, n, qy mod n and signatures
based on both of the nonces, g, n and qy, where g
and n are primes

3 - Client → Server Client will now send value qx mod n to the server,
accompanied by a note in changing the cipher mode
to be encrypted and a Ąnal message authentication
code value based on all the previous handshake pro-
tocol messaging and on the master secret, derived
from the shared secret and from the nonces

4 - Server → Client Finally, server will respond with a similar message
authentication code value based in the previous
session protocol messaging and the master secret
and these two code values should then match

5 - Server ←→ Client The encrypted data transfer can commence and
the shared and validated master secret can then
be used to encrypt end decrypt the data for this
session
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C Appendix - Python and C code performance

comparison

Choosing an optimal programming language for high performance web service can
be problematic and one has to take development times into account where it matters
when working code and actual programs hit the table. There is no way around the
simple fact, though, that Python is a high-level programming language whereas C
(and C++) is a mid- to low-level programming language which will usually result C
programs being noticeably quicker when handling massive amounts of operations.
There are few technical key reasons for this performance difference as is elaborated
below:

• While C code is compiled Ąrst and the run, Python code is run with the Python
interpreter program which will take up additional resources.

• With C, the memory management is totally in the hands of the coder and
works on a very low-level, for better or worse, whereas with Python, similarly
to other high-level programming languages, the interpreter will handle memory
use automatically which may lead to programs using memory in non-optimized
manner.

• Python is actually built upon C and various Python primitives and program-
ming constructs are actually C entities with added complexity. For example,
just the standard integer variable in Python is a C class object with vary-
ing attributes. This can result Python code taking up more resources even
with simple operations compared to C code, where at least the programming
primitives are very lightweight.

• Python interpreter may do unnecessary logical checks and other code monitoring
during the program run which will use additional computing resources.

• Important limitation with the Python is also PythonŠs global interpreter lock
which will prevent python threads from utilizing multiple processor cores
simultaneously. Python programs need separate processes to do this which
may include signaling overheads if data is to be transmitted between processes
via process managers or queues.[147].[148]

To illustrate the performance differences with simple network services, a test was
done using UDP services done either with C or with Python. The test setup was the
same cloud system from Figure 30, that was in use with delay and DDoS-tests earlier
in the thesis. In this comparison case, one cloud server would act as a client and
another cloud VM would be the server. With this test, the Ąrst setup involved an
UPD echo server which would echo any UDP messages sent to it back to the client.
The second case utilized similar UDP server, but now small amount of textual data
was retrieved from the server memory and this was then used as an UDP reply to the
client. The Ąnal case involved setting up BIND DNS server to act as a C program
which did hold just one address mapping in its service database that could then
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be queried. For comparison, a simple, custom DNS server using UDP was set up
with python, where dnspython library was used to parse incoming DNS queries [121],
retrieve address data from memory containing just one address, and then create a
DNS reply to be sent back to the client. The results of this test are shown in Figure C1.

Figure C1: C and Python UDP server performance comparison

With Python, the server program was run with both Python 3.7 which is the newest
stable version when writing this thesis, and with PyPy 3.5.3, which is an optional
Python interpreter with performance optimizations [149]. The client software in this
test was the Linux dnsperf tool that could be used to send UDP messages or UDP
DNS queries at very high rates [150]. With very little memory management or object
creation operations, the capacity difference is not that big, especially between PyPy
interpreter and C, but problems arise when the memory manipulation and object
creation operations accumulate which is an eventuality with more complex programs
such as DNS server.

There are, however, clear beneĄts for programming with Python. For one, Python
has vast amount of additional libraries which will make coding complex software
far easier than doing the same with C. Additionally the syntax and lack of tedious
memory management make programming with Python generally much faster. There
is also the option to utilize effective C code within Python programs as has been
done with various additional Python libraries such as NumPy, but this may make the
program code to be very complex and cluttered. In conclusion, Program prototypes
can be made much faster with Python, but for actual deployment for high-stress
server programs, serious thought must be put into porting the program to more
efficient lower-level programming languages such as C or C++.


